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Abstract

Many learning problems are described by a risk functional which in turn is defined by a
loss function, and a straightforward and widely-known approach to learn such problems is to
minimize a (modified) empirical version of this risk functional. However, in many cases this
approach suffers from substantial problems such as computational requirements in classification
or robustness concerns in regression. In order to resolve these issues many successful learning
algorithms try to minimize a (modified) empirical risk of a surrogate loss function, instead. Of
course, such a surrogate loss must be “reasonably related” to the original loss function since
otherwise this approach cannot work well. For classification good surrogate loss functions have
been recently identified, and the relationship between the excess classification risk and the
excess risk of these surrogate loss functions has been exactly described. However, beyond the
classification problem little is known on good surrogate loss functions up to now. In this work
we establish a general theory that provides powerful tools for comparing excess risks of different
loss functions. We then apply this theory to several learning problems including (cost-sensitive)
classification, regression, density estimation, and density level detection.

1 Introduction

In many machine learning problems the learning goal is described by a loss function and its asso-
ciated risk. A typical example of such a learning problem is binary classification, where a training
set T := ((x1, y1), . . . , (xn, yn)) is given and the goal is to predict the label y ∈ Y := {−1, 1} for
a new, unseen input sample x ∈ X. Commonly, it is assumed that the samples are drawn in an
i.i.d. fashion from an unknown probability measure P on X×Y . The simplest learning goal is then
to have an almost minimal prediction error on average future data, i.e. to find a function f : X → R
such that

P
({

(x, y) ∈ X × Y : sign f(x) 6= y
})

is as small as possible. It is well-known and obvious that writing L(y, t) := 1 if y sign t < 0 and
L(y, t) := 0 otherwise, the above probability equals the so-called classification risk

RL,P (f) :=
∫
X×Y

L
(
y, f(x)

)
dP (x, y)

and consequently, the learning goal is then to find a function f that (approximately) minimizes
this risk. This form of a learning goal appears in many other learning problems, too. Probably the
best known example of such a learning problem is real-valued regression, however there are many
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other important learning problems like cost-sensitive binary classification, multi-class classification,
density estimation, or density level detection (see Section 4 for a rigorous definition of these learning
problems) which can also be described by a risk functional.

Having a learning problem of the above form a simple and well-known learning approach is the
empirical risk minimization (ERM) method. Basically, the idea of ERM is to replace the unknown
true risk RL,P (.) by its empirical counterpart based on the training set T and minimize this
empirical L-risk over a suitable function class. Though this approach has a lot of theoretical merits,
for classification it typically leads to NP-hard optimization problems (see e.g. [14]), and thus it is
not computationally realizable. One way to resolve this issue is to use a surrogate loss function L2,
e.g. the hinge loss as in support vector machines, and then to minimize the (perhaps even further
modified) empirical L2-risk. Let us assume for a moment that such a learning method L learns the
surrogate learning problem defined by the loss L2, i.e. we know RL2,P (fT ) → R∗L2,P

, where fT is the
function produced by the learning method L and R∗L2,P

:= inf{RL2,P (f) | f : X → R measurable}
is the smallest possible L2-risk. The first question which then naturally arises is:

Question 1. Does the convergence RL2,P (fT ) → R∗L2,P
imply the convergence RL,P (fT ) → R∗L,P?

If we can find a positive answer to this question we know at least asymptotically that by solving
the surrogate learning problem we actually also solve the learning problem we are interested in,
and in this sense L is a suitable learning approach. However, in many situations we are not only
interested in such an asymptotic relation, but also in a more quantitative statement. This leads to
the second question:

Question 2. Does there exists an increasing function Υ : [0,∞) → [0,∞) with Υ(0) = 0, which is
continuous in 0 and satisfies

RL,P (f)−R∗
L,P ≤ Υ

(
RL2,P (f)−R∗L2,P

)
?

For the binary classification problem both questions have been intensively investigated in recent
years (see e.g. [18, 19, 37, 27, 1]), and for margin-based loss functions L2, i.e. for loss functions of
the form L2(y, t) = ϕ(yt), complete answers were established in [1]. However, using a surrogate loss
function is a strategy that is not only interesting for binary classification. Indeed, this approach
also has its benefits in the following learning problems:

Cost-sensitive binary classification. In cost-sensitive binary classification the two different
types of errors are penalized differently. Consequently, the optimization problem of a sim-
ple ERM approach remains NP-hard to solve, and thus suitable surrogate loss functions are
desired for a computational treatment. Despite the practical importance of this learning
problem only very little is known in view of the above questions (see [20] for a conjecture
related to the above questions and [10] for a discussion of this learning problem).

Regression. The classical loss function for regression problems is the least squares loss. Though
this loss is mathematically rather easy to handle and the corresponding learning algorithms are
often computational feasible, it is well-known that minimizing an empirical risk based on the
least squares loss is a method which is quite sensitive to outliers. Therefore, a number of more
robust surrogate loss functions have been proposed in the last decades (see e.g. [15, 32, 25, 9]).
Up to now, the analysis of such regression loss functions is typically conducted in a maximum-
likelihood fashion which relates the loss functions to density models of the (conditional)
noise distributions. However, the maximum-likelihood approach requires knowledge about
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the marginal distribution which is usually not available and in addition, it does not give
information regarding our two basic questions.

Density level detection. The common performance measure of the density level detection prob-
lem is a risk functional whose loss function is defined in terms of the unknown density (see
e.g. [12, 21, 22, 31]). Consequently, the loss function is unknown and cannot be used to a)
compute a test error, b) build a (modified) ERM approach, and c) compare different solu-
tions to the density level detection problem. Therefore, having a reasonable surrogate risk is
essential for dealing with the density level detection problem.

Density estimation. The common performance measures for the density estimation problem are
p-norms of the difference between the unknown density and its estimate. Again, these perfor-
mance measures are risks with respect to a loss function defined by the unknown density, and
consequently, the density estimation problem suffers from the same problems as the density
level detection problem does.

Obviously, the above learning problems are rather different regarding their defining risk functionals,
and in addition, the above list is by no means complete (see e.g. the recent work on multi-class
classification in [36, 30]). In order to systematically investigate our two questions we will therefore
first establish a very general theory that describes how to relate the excess risks of different loss
functions. In large parts this general theory unifies earlier findings of [1], [27], [37], [36], but it also
contains new results. In a second step we then demonstrate the power of this theory by applying
it to the learning problems described above. Let us briefly summarize our findings:

• Cost-sensitive classification. We show that a natural weighting method for margin-based
loss functions allows us to translate the results of [1] to analogous results for cost-sensitive
classification. In particular, we give positive answers to Question 1 and 2. Moreover, we show
that the natural weighting method is the only one that allows such positive answers.

• Regression. We first show that the least squares loss is essentially the only loss function of
the form L2(y, t) = ψ(y − t) that can be used to find the regression function. For some large
classes of symmetric noise distributions we then characterize the loss functions of the above
form that allow positive answers to the questions 1 and 2 if the target risk is the 1-norm
distance between the regression function and its prediction. Here it will turn out that the
convexity of L2 and related, stronger notions such as strict convexity and uniform convexity
play a crucial role. Moreover, we show that for unbounded, symmetric, but otherwise unspec-
ified noise every loss function of the above form that admits a positive answer to Question
2 must grow at least as fast as the squared loss. Consequently, every ERM approach based
on such loss functions for finding the regression function either learns the problem only in a
weak sense or is sensitive to outliers. Finally, we discuss in which cases and in which sense
approximate risk minimizers approximate the exact risk minimizer.

• Density level detection. It was recently shown in [28] that the density level detection
problem can be solved by learning a binary classification problem, and in fact, the widely
known excess mass approach (see e.g. [12, 21, 22, 31]) implicitly implements ERM of this
classification problem. We extend the considerations of [28] and show that there exists no
surrogate loss function which allows a positive answer to the second question without making
assumptions on the density.

• Density estimation. A well-known heuristic (see e.g. [13, Chap. 14.2.4]) casts the density
estimation problem into a supervised learning problem by using additional samples drawn
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from the known reference measure. However, to our best knowledge, there is nothing known
about this heuristic in view of the above questions. For convex loss functions we are able to
give a weak positive answer to the first question. Furthermore, we present a result showing
that the second answer cannot be positively answered.

The rest of this work is organized as follows: In the sections 2 and 3 we develop the general
theory on excess risks. Section 4 then contains the results for the above learning problems. The
proofs of the results of the sections 2 and 3 can be found in Section 5. In addition, this section
contains a powerful tool ensuring the existence of measurable selections which is used to deal with
the notoriously unpleasant measurability questions related to minimal risks. Finally, the appendix
contains some additional information on stronger notions of convexity.

2 The General Theory

In this section we introduce some fundamental definitions related to general cost functions of a form
similar to those considered in [33]. We then develop the central tools for investigating surrogate
cost functions and present general answers to Questions 1 and 2. Some of these answers are not
genuinely new and have been previously found in other forms or less generality by other authors (see
e.g. [1], [27], [37], and [36]), and the proofs of these results are not that deep, either. What is new,
however, is the language we introduce in this section which clearly describes the key quantity related
to surrogate cost functions, namely the calibration function defined in Lemma 2.9. In particular,
this calibration function will enable us to easily investigate the general case in this section and the
following section, and important examples in Section 4. Consequently, it is the central notion of
the entire work.

Let us begin with some notations which will be used throughout this work. To this end let X be
a nonempty set equipped with a σ-algebra X . Given a finite measure µ on X the µ-completion Xµ
of X is defined by

Xµ :=
{
A ∪B : A ∈ X ,∃N ∈ X with µ(N) = 0 and B ⊂ N

}
.

Moreover, the completion X̂ of X is defined by

X̂ :=
{
A ⊂ X : A ∈ Xµ for all finite measures µ on X

}
,

and the measurable space (X,X ) is called complete if X = X̂ . Throughout this work we assume
that (X,X ) is complete. Moreover, Y always denotes Polish space, i.e. a topological space whose
topology can be described by a complete and separable metric, and we always equip Y with its
Borel σ-algebra. In particular recall that all open or closed subsets of R are Polish spaces.

For a probability measure P on X × Y we denote the marginal distribution on X by PX . Fur-
thermore, P ( . | . ) : Y × X → [0, 1] stands for a fixed regular conditional probability, so that we
have ∫

X×Y
f dP =

∫
X

∫
Y
f(x, y) dP (y|x)dPX(x)

for all measurable functions f : X × Y → [0,∞]. As usual Lp(µ), p ∈ (0,∞), denotes the space of
all measurable functions f : X → R that are p-integrable with respect to the measure µ on (X,X ).
Finally, throughout this section A denotes a non-empty but otherwise arbitrary set which describes
the parameter or function which we wish to estimate. Let us now begin with some fundamental
definitions:
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Definition 2.1 (Cost function) A function L : X × Y ×A → [0,∞] is called a cost function if
L(., ., α) : X × Y → [0,∞] is measurable for all α ∈ A

Cost functions which play a key role in most machine learning considerations measure the cost
of using the parameter α at the point (x, y). In general we are interested in small average costs
which are introduced in the following definition:

Definition 2.2 (Risk) Let L : X × Y ×A → [0,∞] be a cost function and P be a distribution on
X × Y . We define the L-risk of α ∈ A by

RL,P (α) :=
∫
X×Y

L(x, y, α)dP (x, y) =
∫
X

∫
Y
L(x, y, α)dP (y|x)dPX(x) . (1)

Moreover, the minimal L-risk, also called the Bayes L-risk, is denoted by R∗
L,P := infα∈ARL,P (α).

The riskRL,P (α) obviously describes the average cost of using the parameter α, where the average
is taken with respect to the distribution P . Now note that using the regular conditional probability
P (y|x), the risk RL,P (α) can be computed by an iterated integral as we have seen in (1). Since the
inner integral in (1) will be of fundamental importance in our analysis we introduce:

Definition 2.3 (Inner risk) Let L : X×Y ×A → [0,∞] be a cost function and Q be a distribution
on Y . We define the inner L-risk of an element α ∈ A by

CL,Q,x(α) :=
∫
Y
L(x, y, α)dQ(y) x ∈ X.

Furthermore, the minimal inner L-risk is denoted by C∗L,Q,x := infα∈A CL,Q,x(α).

Note that given a distribution P on X ×Y the inner risks CL,P (.|x),x(α), x ∈ X, of α can be used
to compute the risk RL,P (α) since (1) immediately gives

RL,P (α) =
∫
X
CL,P (.|x),x(α) dPX(x) .

Our first goal is to establish the same relation between the minimal inner risks and the minimal
risk. To this end we need the following definition which will be used to ensure that x 7→ C∗L,P (.|x),x
is measurable:

Definition 2.4 (Minimizable cost functions) Let L : X × Y × A → [0,∞] be a cost function
and P be a distribution on X × Y . We say that L is P -minimizable if for all ε > 0 there exists an
αε ∈ A such that for all x ∈ X we have

CL,P (.|x),x(αε) < C∗L,P (.|x),x + ε . (2)

Note that the above definition in particular ensures C∗L,P (.|x),x < ∞ for all x ∈ X. Now we can
establish the following simple but important lemma which computes R∗

L,P with the help of the
corresponding minimal inner risks:

Lemma 2.5 Let P be a distribution on X × Y and L : X × Y × A → [0,∞] be a P -minimizable
cost function. Then x 7→ C∗L,P (.|x),x is measurable and we have

R∗L,P =
∫
X
C∗L,P (.|x),x dPX(x) .
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The above lemma shows that the minimal risk R∗
L,P can be achieved by pointwisely minimizing

the inner risks CL,P (.|x),x(.), x ∈ X, which—in general—will be easier than direct minimization of
RL,P (.). Moreover, for P -minimizable L with R∗

L,P <∞ we have

RL,P (α)−R∗
L,P =

∫
X
CL,P (.|x),x(α)− C∗L,P (.|x),x dPX(x)

for all α ∈ A. Consequently, we can split the analysis of RL,P (α)−R∗L,P into a) the analysis of the
inner excess risks CL,P (.|x),x(α)−C∗L,P (.|x),x, x ∈ X, and b) the investigation of the integration with
respect to PX . Besides technical benefits, the major benefit of this approach is that the analysis in
a) only depends on P via the conditional distributions P (.|x) and hence we can consider the excess
inner risks CL,Q,x(α) − C∗L,Q,x for suitable distributions Q on Y as a template for CL,P (.|x),x(α) −
C∗L,P (.|x),x. The latter does not only reduce notations but also supports the machine learning point
of view in which it is assumed that P , and hence P (.|x), x ∈ X, is (almost) completely unknown.
To pursue this idea we make the following definition:

Definition 2.6 Let Q be a set of distributions on Y . We say that a distribution P on X ×Y is of
type Q if P (.|x) ∈ Q for all x ∈ X.

In many machine learning problems the only information given about the distribution P is that
it is of type Q for some “large” set of distributions Q. For example, in binary classification one
typically only knows that P is a distribution on X × {−1, 1}, i.e. that P is a distribution of type
Q, where Q consists of all distributions on {−1, 1}.

Before we begin with our analysis let us introduce some more notations which will be very useful.
The sets containing the elements in A that “almost” minimize the inner risk at x are denoted by

ML,Q,x(ε) :=
{
α ∈ A : CL,Q,x(α) < C∗L,Q,x + ε

}
, ε ∈ [0,∞].

For later use we note that we always have ML,Q,x(0) = ∅ and ML,Q,x(ε1) ⊂ ML,Q,x(ε2) for
0 ≤ ε1 ≤ ε2 ≤ ∞. Furthermore we have ML,Q,x(ε) 6= ∅ for some ε ∈ (0,∞] if and only if
C∗L,Q,x < ∞. In particular, for P -minimizable cost functions we have ML,P (.|x),x(ε) 6= ∅ for all
ε > 0 and x ∈ X. Finally, we write

ML,Q,x(0+) :=
⋂
ε>0

ML,Q,x(ε) =
{
α ∈ A : CL,Q,x(α) < C∗L,Q,x + ε for all ε > 0

}
.

Note that in the case C∗L,Q,x < ∞ the set ML,Q,x(0+) contains those elements in A that exactly
minimize CL,Q,x(.), while in the other case C∗L,Q,x = ∞ the set is empty.

Let us now turn to the main goal of this section, namely comparing the excess risks of different
cost functions. To this end we first observe that given two cost functions L1 : X × Y ×A → [0,∞)
and L2 : X × Y ×A → [0,∞) with

ML2,P (.|x),x(0
+) ⊂ML1,P (.|x),x(0

+) , x ∈ X ,

Lemma 2.5 shows that every exact minimizer α∗ ∈ A of RL2,P (.) is also an exact minimizer
of RL1,P (.). However, exact minimizers do not necessarily exist, and even if they do exist it is
rather unlikely that we will find them by a learning procedure. On the other hand, many learning
procedures guarantee to find approximate minimizers with high probability, and thus our overall
goal is to establish properties similar to the above observation for approximate minimizers. Let us
begin with the following definition.
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Definition 2.7 (Calibration) Let Q be a set of distributions on Y , and L1 : X×Y ×A → [0,∞],
L2 : X × Y ×A → [0,∞] be two cost functions. We say that L2 is L1-calibrated with respect to Q
if for all ε > 0, Q ∈ Q, and x ∈ X there exists a δ > 0 such that

ML2,Q,x(δ) ⊂ML1,Q,x(ε) , (3)

i.e. if for all α ∈ A we have

CL2,Q,x(α) < C∗L2,Q,x + δ =⇒ CL1,Q,x(α) < C∗L1,Q,x + ε . (4)

Furthermore, we say that L2 is L1-calibrated with respect to a distribution P on X × Y if L2 is
L1-calibrated with respect to the set {P (.|x) : x ∈ X}.

Obviously, L2 is L1-calibrated with respect to P if for any given accuracy ε > 0 there exists a δ > 0
such that every α ∈ A minimizing CL2,P (.|x),x(.) up to δ minimizes CL1,P (.|x),x(.) up to the desired
accuracy ε. In other words, L2 is L1-calibrated with respect to P if and only if we have a positive
answer to Question 1 for the excess inner risks. Before we investigate some general techniques
to check for calibration we now present our first main result that shows that for calibrated cost
functions we often have a positive answer to Question 1 for the excess risks, too:

Theorem 2.8 Let P be a distribution on X ×Y and L1 : X ×Y ×A → [0,∞], L2 : X ×Y ×A →
[0,∞] be two P -minimizable cost functions such that R∗L1,P

< ∞ and R∗
L2,P

< ∞. Furthermore
assume that there exist a function b ∈ L1(PX) and measurable functions δ(ε, .) : X → (0,∞), ε > 0,
such that

CL1,P (.|x),x(α) ≤ C∗L1,P (.|x),x + b(x) (5)

and

CL2,P (.|x),x(α) < C∗L2,P (.|x),x + δ(ε, x) =⇒ CL1,P (.|x),x(α) < C∗L1,P (.|x),x + ε (6)

for all x ∈ X, ε > 0 and α ∈ A. Then for all ε > 0 there exists a δ > 0 such that for all α ∈ A we
have

RL2,P (α) < R∗L2,P + δ =⇒ RL1,P (α) < R∗
L1,P + ε . (7)

Note that (7) is equivalent to a positive answer of Question 1, and consequently Theorem 2.8 gives
a sufficient condition for a asymptotic relationship between different excess risks in the sense of this
question. Moreover, Condition (6) implies that L2 is L1-calibrated with respect to P , and in fact,
the only difference between this condition and the calibration with respect to P is the measurability
of δ(ε, .) which is necessary for technical reasons. However, we will see later in Theorem 3.3 that
for A consisting of functions over X, this measurability is often automatically satisfied by the
so-called calibration function defined below. In addition, Theorem 3.3 shows that in this case the
L1-calibration of L2 is also a necessary condition for (7), and hence this theorem will give us a
complete answer to Question 1.

In order to apply Theorem 2.8 the main difficulty is usually to determine numbers δ(ε, x) > 0
with ML2,P (.|x),x(δ(ε, x)) ⊂ ML1,P (.|x),x(ε), i.e. to ensure the calibration. The following lemma
describes an easy yet optimal solution for this task.

Lemma 2.9 (Calibration function) Let Q be a distribution on Y , and L1 : X × Y × A →
[0,∞], L2 : X × Y × A → [0,∞] be two cost functions. Then we define the calibration function
δmax (., Q, x) : [0,∞] → [0,∞] of (L1, L2) by

δmax (ε,Q, x) :=

{
infα∈A\ML1,Q,x(ε) CL2,Q,x(α)− C∗L2,Q,x

if C∗L2,Q,x
<∞,

∞ if C∗L2,Q,x
= ∞

(8)
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for all ε ∈ [0,∞]. Then for all ε ∈ [0,∞] we have:

i) ML2,Q,x(δmax (ε,Q, x)) ⊂ML1,Q,x(ε).

ii) ML2,Q,x(δ) 6⊂ ML1,Q,x(ε) whenever δ > δmax (ε,Q, x).

In addition, if both C∗L1,Q,x
<∞ and C∗L2,Q,x

<∞, then for all α ∈ A we have

δmax

(
CL1,Q,x(α)− C∗L1,Q,x, Q, x

)
≤ CL2,Q,x(α)− C∗L2,Q,x . (9)

Note that in some cases we have to distinguish between different calibration functions and hence
we occasionally use the notation δmax,L1,L2(., Q, x) := δmax(., Q, x) for the calibration function
δmax (., Q, x) of (L1, L2).

Obviously, part i) of Lemma 2.9 states that L2 is L1-calibrated with respect toQ if δmax (ε,Q, x) >
0 for all x ∈ X, Q ∈ Q, and ε > 0. Moreover, part ii) shows there is no real number δ larger than
δmax (ε,Q, x) satisfying the calibration condition (3), and consequently, L2 is L1-calibrated with
respect to Q if and only if we have δmax (ε,Q, x) > 0 for all x ∈ X, Q ∈ Q, and ε > 0. In
other words, the calibration function is the quantity we have to investigate when we want to check
whether L2 is L1-calibrated or not (see e.g. the theorems 4.18, 4.19, and 4.29 for results in this
direction).

Fortunately, it turns out that in most practical situations the computation of the calibration
function is a straightforward exercise, and for the learning scenarios mentioned in the introduction
the corresponding results can be found in the lemmas 4.1, 4.6, 4.16, and 4.28. Moreover, if the
surrogate cost function is convex1 in the sense of the following definition this computation is rather
easy even in the general case as we will see below:

Definition 2.10 A cost function L : X × Y × R → [0,∞] is called (strictly) convex if L(x, y, .) :
R → [0,∞] is (strictly) convex for all x ∈ X and y ∈ Y .

As already indicated, the calibration function for convex surrogates can be easily computed. This
is stated in the following result:

Lemma 2.11 Let Q be a distribution on Y and L1 : X × Y × R → [0,∞] be a cost function such
that ML1,Q,x(ε) is a non-empty interval for some x ∈ X and ε > 0. Moreover, let L2 : X × Y ×
R → [0,∞] be a convex cost function such that CL2,Q,x(t) < ∞ for all t ∈ R. If ML2,Q,x(0

+) ⊂
ML1,Q,x(0

+) then we have

δmax(ε,Q, x) = min
{
CL2,Q,x(supML1,Q,x(ε)), CL2,Q,x(infML1,Q,x(ε))

}
− C∗L2,Q,x , (10)

where CL2,Q,x(±∞) := ∞.
In particular, if supML1,Q,x(ε) 6∈ ML2,Q,x(0

+) and infML1,Q,x(ε) 6∈ ML2,Q,x(0
+) then

δmax(ε,Q, x) > 0.

In the machine learning literature a cost function L2 is often considered to be a suitable surrogate
for L1 if the relation ML2,Q,x(0

+) ⊂ ML1,Q,x(0
+) holds. Of course, in general this relation is not

sufficient for calibration. However, for many target cost functions the sets ML1,Q,x(ε) are intervals
whose endpoints differ from the endpoints of ML1,Q,x(0

+). In addition, one is often only interested
in convex surrogates because of algorithmic issues. Now note that in such cases the above lemma
shows that ML2,Q,x(0

+) ⊂ ML1,Q,x(0
+) is sufficient for calibration, and hence it gives the first

rigorous justification for considering this inclusion instead of general calibration question.
1Basic definitions and properties regarding convexity can be found in the appendix.
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Let us now investigate Question 2. To this end observe that in some sense inequalities between
the involved excess risks are readily available by Theorem 2.8: indeed, for ε > 0 let δ(ε) > 0 be a
real number such that implication (7) holds for all α ∈ A. Furthermore, we define δ(0) := 0. For
α ∈ A with ε := RL1,P (α)−R∗

L1,P
> 0 we then have RL2,P (α)−R∗

L2,P
≥ δ(ε), or in other words

δ
(
RL1,P (α)−R∗L1,P

)
≤ RL2,P (α)−R∗

L2,P . (11)

Furthermore, for α ∈ A with RL1,P (α) − R∗
L1,P

= 0 this inequality is satisfied by our definition
δ(0) = 0, and consequently (11) is satisfied for all α ∈ A. Inverting this inequality then gives a
positive answer to Question 2. However, the proof of Theorem 2.8 does unfortunately not provide
a constructive way to find a value for δ(ε), and hence our next aim is to describe conditions on L1,
L2, and P which will allow us to easily establish inequalities in many situations. To this end we
begin with the following definition.

Definition 2.12 (Fenchel-Legendre biconjugate) Let I ⊂ R be an interval and g : I → [0,∞]
be a function. Then the Fenchel-Legendre bi-conjugate g∗∗ : I → [0,∞] of g is the largest convex
function h : I → [0,∞] satisfying h ≤ g.

Moreover, we use the convention g∗∗(∞) := limx→∞ g∗∗(x) for functions g : [0,∞) → [0,∞).

Note that the Fenchel-Legendre bi-conjugate which is a well-known tool in convex analysis (see
e.g. [24]), is determined by

Epi g∗∗ = co Epi g ,

where Epi g := {(x, y) ∈ I × [0,∞] : g(x) ≤ y} denotes the epigraph of g and coA denotes the
convex hull of a set A.

Now we are prepared to establish our first inequalities between excess risks of different cost
functions.

Theorem 2.13 Let P be a distribution on X×Y and L1 : X×Y ×A → [0,∞], L2 : X×Y ×A →
[0,∞] be two P -minimizable cost functions with R∗L1,P

<∞ and R∗L2,P
<∞. We write

Bα := ess -sup
x∈X

CL1,P (.|x),x(α)− C∗L1,P (.|x),x

for all α ∈ A. Furthermore, let δ : [0,∞] → [0,∞] be a function with δ(0) = 0 and

ML2,P (.|x),x(δ(ε)) ⊂ML1,P (.|x),x(ε) (12)

for all x ∈ X and all ε ∈ [0,∞]. Then for all α ∈ A we have

δ∗∗Bα

(
RL1,P (α)−R∗L1,P

)
≤ RL2,P (α)−R∗

L2,P , (13)

where δ∗∗Bα
: [0, Bα] → [0,∞] denotes the Fenchel-Legendre biconjugate of the restriction δ|[0,Bα].

Remark 2.14 It is straightforward to see from the definition of the Fenchel-Legendre bi-conjugate that
(13) actually holds for all convex functions δ̃ : [0, Bα] → [0,∞] satisfying δ̃ ≤ δ. Moreover, if the function δ
in the above theorem is increasing with δ(ε) > 0 for all ε > 0 and we have Bα <∞ then Lemma A.6 shows
that its bi-conjugate satisfies δ∗∗Bα

(ε) > 0 for all ε ∈ (0, Bα]. Moreover, the bi-conjugate is always convex,
and since δ∗∗Bα

(0) = 0 it is also strictly increasing and thus injective. Consequently, if δ∗∗Bα
is finite, then it

has a continuous inverse, and hence we have found a positive answer to Question 2. However, in general this
is no longer true if Bα = ∞, as e.g. the case δ(ε) =

√
ε, ε ≥ 0, shows (see also [34, Prop. A.5] for conditions

guaranteeing δ∗∗ > 0).
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We will see in Theorem 2.17 that Condition (12) is also necessary if one wants to have an inequality between
the two excess risks that is independent of the specific distribution P . Of course, from a machine learning
perspective this independence is a highly desired property since in general the data-generating distribution
P is assumed to be unknown. Finally, we will see in Section 4 that for binary classification the inequalities
established in Theorem 2.13 coincide with the inequalities found in [1]. Since their inequalities are sharp
if one does not make additional assumptions on P , we see that the inequalities of Theorem 2.13 cannot be
improved in general. However, note that under certain conditions on P there are substantial improvements
possible, and we will present examples of such improvements after Theorem 3.9.

Using the notion of uniform calibration introduced in Definition 2.15 below, Theorem 2.13 immediately
gives inequalities for several surrogates of interesting learning scenarios. For some examples we refer to
Theorem 4.3, Example 4.5, Remark 4.8, Theorem 4.20, and Theorem 4.24.

Finally, the almost trivial case of Theorem 2.13, i.e. the case of α ∈ A satisfying RL,P (α) <∞, is (up to
measurability) also a direct consequence of the more general [36, Theorem 24] which in turn was inspired by
a less general result of [1]. We added the short proof for this case for the sake of completeness.

If the function δ in the above theorem satisfies δ(ε) > 0 for all ε > 0 then condition (12) is a
uniform version of the notion of calibration. Let us describe this situation in the following definition:

Definition 2.15 (Uniform calibration) Let Q be a set of distributions on Y , and L1 : X ×Y ×
A → [0,∞), L2 : X × Y × A → [0,∞) be two cost functions. We say that L2 is uniformly L1-
calibrated with respect to Q if for all ε > 0 there exists a δ > 0 such that ML2,Q,x(δ) ⊂ML1,Q,x(ε)
for all Q ∈ Q and x ∈ X, i.e. if for all Q ∈ Q, x ∈ X, and α ∈ A we have

CL2,Q,x(α) < C∗L2,Q,x + δ =⇒ CL1,Q,x(α) < C∗L1,Q,x + ε .

Furthermore, we say that L2 is uniformly L1-calibrated with respect to a distribution P on X × Y
if L2 is uniformly L1-calibrated with respect to the set {P (.|x) : x ∈ X}.

Obviously the above definition guarantees that L1 is P -minimizable whenever L2 is so. Now
observe that the larger the function δ satisfying (12) is, the better inequality (13) becomes. Given
a set Q of distributions on Y let us consequently consider the best possible candidate function,
that is

δmax(ε,Q) := sup
{
δ ≥ 0 : ML2,Q,x(δ) ⊂ML1,Q,x(ε) for all x ∈ X, Q ∈ Q

}
, ε ∈ [0,∞]. (14)

Obviously, L2 is uniformly L1-calibrated with respect to Q if and only if δmax(ε,Q) > 0 for all
ε > 0.

For a given distribution P on X × Y let us write δmax(ε, P ) := δmax(ε, {P (.|x) : x ∈ X}).
Assuming that P is of type Q we then have δmax(ε,Q) ≤ δmax(ε, P ) and consequently, the next
lemma shows that the distribution-independent function δmax(.,Q) can be used in Theorem 2.13.2

Furthermore, it provides a simple method to calculate δmax(.,Q):

Lemma 2.16 Let Q be a set of distributions on Y , and L1 : X×Y ×A → [0,∞), L2 : X×Y ×A →
[0,∞) be two cost functions. Then for all x ∈ X and all ε > 0 we have

ML2,Q,x(δmax(ε,Q)) ⊂ML1,Q,x(ε)

and
δmax(ε,Q) = inf

Q∈Q
x∈X

δmax (ε,Q, x) .

2In Theorem 3.6 we will see that under rather natural conditions, using δmax(.,Q) does not give worse inequalities
than using δmax(ε, P ).
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Theorem 2.13 states that for distributions P of type Q we can find inequalities between the
excess risks of uniformly calibrated cost functions. The following theorem shows that the uniform
calibration is also necessary for such inequalities.

Theorem 2.17 Let L1 : X × Y ×A → [0,∞) and L2 : X × Y ×A → [0,∞) be two cost functions,
and Q be class of distributions on Y with C∗L1,Q,x

< ∞ and C∗L2,Q,x
< ∞ for all x ∈ X, Q ∈ Q.

Furthermore, let δ : [0,∞] → [0,∞] be an increasing function with δ(0) = 0 and δ(ε) > 0 for all
ε > 0. If for all distributions P of type Q satisfying R∗L1,P

<∞ and R∗
L2,P

<∞, and all measurable
α ∈ A we have

δ
(
RL1,P (α)−R∗L1,P

)
≤ RL2,P (α)−R∗

L2,P ,

then L2 is uniformly L1-calibrated with respect to Q.

Unfortunately, it will turn out that in many situations such as regression or density estimation we
cannot find interesting, uniformly calibrated surrogates. In such situations the following theorem
which presents inequalities between excess risks under less restrictive calibration assumptions can
help:

Theorem 2.18 Let P be a distribution on X×Y and L1 : X×Y ×A → [0,∞), L2 : X×Y ×A →
[0,∞) be P -minimizable cost functions. Assume that there exist p ∈ (0,∞], q ≥ p+1

p , and a function
b : X → [0,∞] such that

δmax(ε, P (.|x), x) ≥ εqb(x) , ε > 0, x ∈ X (15)

and b−1 ∈ Lp(PX). Then for all α ∈ A we have

RL1,P (α)−R∗
L1,P ≤ ‖b

−1‖
1
q

Lp(PX)

(
RL2,P (α)−R∗

L2,P

) 1
q
.

Remark 2.19 The above condition b−1 ∈ Lp(PX) measures how much the calibration function
δmax(ε, P (.|x), x) violates a uniform lower bound of the form δmax(ε, P (.|x), x) ≥ cεq, ε ∈ [0,∞]. Indeed, the
larger we can choose p in Condition (15) the more the shape of b is away from the critical level 0, and thus
the closer Condition (15) is to a uniform lower bound. In the extremal case p = ∞, Condition (15) actually
becomes a uniform bound, and the inequality of Theorem 2.18 equals the inequality of Theorem 2.13.

Finally, it is interesting to note that up to measurability considerations Theorem 2.18 can also be derived
from the more general [36, Theorem 24]. Since the direct proof is very easy we decided to include it for the
sake of completeness.

3 Loss Functions

In the previous section we have not specified the hypothesis set A and how the cost function acts on
this set. In this subsection we will now investigate loss functions which are cost functions where F
consists of measurable functions f : X → T and the cost acts on this set pointwise, i.e. in the form
L(x, y, f(x)). Obviously, all results of the previous section can be applied to such cost functions,
but it will turn out in this section that in some cases we can actually show more. The rest of this
section is organized as follows: In the first subsection we will formally introduce loss functions.
Then our main focus in this subsection is to show that under mild assumptions the conditions of
the last section ensuring measurability of e.g. the inner Bayes risks are automatically satisfied. In
addition, we show that for loss functions Theorem 2.7 is in some sense optimal. In the following
two subsections we then prove some additional properties of certain types of loss functions. Finally,
we investigate in the last subsection whether and in which sense approximate L-risk minimizers
approximate exact minimizer of the L-risk.
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3.1 Measurability Considerations for Loss Functions

In this subsection we first introduce loss functions and some notations related to them. Our
main results of this subsection are then presented in Theorem 3.2 and 3.3 which mainly deal with
measurability questions.

Let us begin with the following fundamental definition which introduces loss functions:

Definition 3.1 (Loss function) Let T be a Polish space. Then a function L : X×Y ×T → [0,∞]
is called a loss function if it is measurable.

Obviously, every loss function L is a cost function, but in general the converse is not true because
of the stronger measurability condition loss functions have to satisfy. Moreover, a loss function L
also induces a cost function acting on the space M(X, T ) of all measurable functions f : X → T .
Indeed, for A := M(X, T ) the mapping

L̂ : X × Y ×A → [0,∞)
(x, y, f) 7→ L(x, y, f(x))

is a cost function since (x, y) 7→ L(x, y, f(x)) is measurable for all f ∈ A. Now note that the inner
risks of L and L̂ are related by

CL̂,Q,x(f) =
∫
Y
L(x, y, f(x)) dQ(x) = CL,Q,x(f(x)) , (16)

and consequently we have C∗
L̂,Q,x

= C∗L,Q,x. In the following we are only interested in the excess

risks of the induced cost function L̂, and therefore we write in a slight abuse of notations

RL,P (f) := RL̂,P (f) , f ∈M(X, T ) ,

and analogously, we define R∗L,P := R∗
L̂,P

. Now recall that all the major results of the previous
section required that the involved cost functions are P -minimizable. Having a loss function L we
consequently need to ensure that its induced cost function L̂ is P -minimizable. This is done in the
following lemma whose main difficulty is to ensure the measurability statements.

Theorem 3.2 Let L : X × Y × T → [0,∞] be a loss function and P be a distribution on X × Y .
Then the following statements are true:

i) L̂ is P -minimizable if and only if C∗L,P (.|x),x <∞ and all x ∈ X .

ii) If we have ML,P (.|x),x(0+) 6= ∅ for all x ∈ X then there exists a measurable function f∗L,P :
X → T with CL,P (.|x),x(f∗L,P (x)) = C∗L,P (.|x),x for all x ∈ X, and consequently we have

RL,P (f∗L,P ) = R∗
L,P .

In combination with Lemma 2.5 the above theorem shows that the inner Bayes risks are mea-
surable under rather general conditions, namely the completeness of (X,X ). Consequently, one
can typically avoid measurability considerations when dealing with loss functions, and therefore
earlier investigations on surrogate loss functions (which all avoided measurability considerations)
are justified with hindsight.

Now recall the key quantity of the previous section was the calibration function. Since we are
only interested in the excess risks of the cost functions L̂1 and L̂2 induced by the loss functions L1
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and L2 we need to calculate the calibration function of (L̂1, L̂2). To this end assume first that we
have C∗L2,Q,x

<∞. Then Equation (16) gives

δmax,L1,L2(ε,Q, x) = inf
t∈T

t6∈ML1,Q,x(ε)

CL2,Q,x(t)− C∗L2,Q,x = δmax,L̂1,L̂2
(ε,Q, x) ,

where in the last equality we used that f :≡ t is a measurable function with f(x) = t. Moreover,
if C∗L2,Q,x

= ∞ the above observation is also true, and consequently it suffices to investigate the
calibration function δmax,L1,L2(ε,Q, x) when dealing with the pair (L̂1, L̂2).

We have already seen in part i) of Lemma 2.9 that the calibration function satisfies Condition
(6), however, in order to use the calibration function in Theorem 2.8 we also need to know that it is
measurable. The following theorem completely resolves this issue, and in addition it characterizes
the distributions for which implication (7) hold:

Theorem 3.3 Let L1 : X × Y × T → [0,∞] and L2 : X × Y × T → [0,∞] be loss functions, and
P be a distribution on X × Y such that R∗L1,P

<∞ and R∗L2,P
<∞. Then

x 7→ δmax(ε, P (.|x), x)

is measurable for all ε > 0. In addition, consider the following statements:

i) For all ε ∈ (0,∞] we have PX
(
{x ∈ X : δmax(ε, P (.|x), x) = 0}

)
= 0.

ii) For all ε ∈ (0,∞] there is a δ > 0 such that for all measurable functions f : X → T we have

RL2,P (f) < R∗
L2,P + δ =⇒ RL1,P (f) < R∗

L1,P + ε . (17)

Then we have ii) ⇒ i), and the inverse implication i) ⇒ ii) holds if there exists a function b ∈
L1(PX) satisfying (6).

The above theorem shows that the L1-calibration is necessary for L2 being a reasonable surrogate
loss in the sense of Question 1. Consequently, the calibration function will be our major tool when
investigating specific learning problems in Section 4.

3.2 Supervised Loss Functions

General loss functions can explicitly depend on the input variable x, and hence so do the derived
quantities like the inner risks. However, many important loss functions are actually independent of
x, and since the theory becomes substantially simpler for such losses we now briefly consider them.
Let us begin with the following definition:

Definition 3.4 (Supervised loss functions) Let T be a Polish space. A function L : Y × T →
[0,∞] is called a supervised loss function if it is measurable.

Formally, supervised loss functions are not loss functions, however, it is obvious that every super-
vised loss function L induces a loss function L̄ via L̄(x, y, t) := L(y, t). In the following we always
identify L with L̄. Now note that the inner risk of L̄ is

CL̄,Q,x(t) =
∫
Y
L(y, t)dQ(y) ,
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i.e. it is independent of x. Moreover, the same is obviously true for the derived quantities C∗L,Q,x,
ML,Q,x(ε), and therefore we usually use the shorter notations

CL,Q(t) := CL̄,Q,x(t), C∗L,Q := C∗L,Q,x, and ML,Q(ε) := ML,Q,x(ε),

where x ∈ X is an arbitrary element. Furthermore, note that if we have two supervised loss
functions then the corresponding calibration function δmax(ε,Q, x) is independent of x, too, and
hence we analogously write δmax(ε,Q) := δmax(ε,Q, x) for some x ∈ X. Finally note that the often
imposed condition C∗

L̄,Q,x
<∞ is also independent of x. This justifies the following definition:

Definition 3.5 Let Q be a class of distributions on Y and L : Y ×T → [0,∞) be a supervised loss
function. Then we write

Q(L) :=
{
Q ∈ Q : C∗L,Q <∞

}
.

Obviously, all theorems we have formulated for cost or loss functions also hold for supervised loss
functions. In particular, for uniformly calibrated supervised loss functions Theorem 2.13 can be used
to establish inequalities between the corresponding excess risks. Now note that for distributions
P of type Q we always have δmax(ε, P ) ≤ δmax(ε,Q), and consequently one may think that using
δmax(ε, P ) instead of δmax(ε,Q) leads to sharper inequalities in Theorem 2.13. The following result
shows that this intuition is usually false if the set Q is not chosen overly conservative:

Theorem 3.6 Let L1 : Y × T → [0,∞], L2 : Y × T → [0,∞] be supervised loss functions and
Q be a set of distributions on Y with Q = Q(L2) = Q(L1). Furthermore assume that there is a
distribution µ on X for which there exist mutually disjoint subsets An ⊂ X, n ∈ N, with µ(An) > 0
for all n ∈ N. Then there exists a distribution P of type Q with PX = µ such that for all ε > 0 we
have

δmax(ε, P ) = δmax(ε,Q) . (18)

3.3 Unsupervised Loss Functions

In the previous part of the work we considered loss functions whose inner risks are independent of
x. Formally we can also consider loss functions whose inner risks are independent of Q. Before we
motivate such losses let us first make a precise definition:

Definition 3.7 (Unsupervised loss functions) Let T be a Polish space. A function L : X ×
T → [0,∞] is called an unsupervised loss function if it is measurable.

Like supervised loss functions, unsupervised loss functions are not loss functions. However, it is
obvious that every unsupervised loss function L induces a loss function L̄ via L̄(x, y, t) := L(x, t).
In the following we always identify L with L̄. Now note that the inner risk of L̄ is

CL̄,Q,x(t) = L(x, t) ,

i.e. it is independent of Q. Moreover, the quantities C∗L,Q,x, ML,Q,x(ε) obviously share this property.
In the following we thus use the shorthands

CL,x(t) := CL,Q,x(t), C∗L,x := C∗L,Q,x, and ML,x(ε) := ML,Q,x(ε),

where Q is an arbitrary distribution. Note that these definitions in particular give

C∗L,x = inf
t∈T

L(x, t) . (19)
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At a first glance it seems rather odd to consider unsupervised loss functions since their associated
(inner) risks CL,P (.|x),x(.) do not depend on the conditional probabilities P (.|x), and hence they
apparently do not define a reasonable learning goal. However, we will see later that the key idea of
unsupervised loss functions is to encode the dependence of P (.|x) on the first input variable x of
L, so that we actually have the possibility to encode dependencies that are not of the form of an
inner risk. This fact will be particularly important when considering unsupervised learning goals
such as density level detection and density estimation. In addition unsupervised loss functions
will also serve as a powerful technical tool when considering general questions on loss functions in
e.g. Subsection 3.4. In this regard the following class of unsupervised loss functions will turn out
to be of particular interest:

Definition 3.8 (Detection loss functions) Let A ⊂ X×T be a measurable subset and h : X →
[0,∞) be a measurable function. Then we call L : X × T → [0,∞) a detection loss function with
respect to (A, h) if

L(x, t) = 1A(x, t)h(x) , x ∈ X , t ∈ T .

Every detection loss function is obviously measurable and hence an unsupervised loss function.
In addition, for x ∈ X and t ∈ T our above notations immediately show

CL,x(t)− C∗L,x =

{
0 if A(x) := {t′ ∈ T : (x, t′) ∈ A} = T
1A(x, t)h(x) else.

(20)

If the detection loss L2 is uniformly L1-calibrated with respect to P , then it is straightforward
to establish inequalities by Theorem 2.13. However, using the specific form of detection losses one
can often improve these inequalities as we will discuss after the following rather general theorem:

Theorem 3.9 Let L1 : X × T → [0,∞) be a detection loss function with respect to (A, h), L2 :
X × Y × T → [0,∞] be a loss function, and P be a distribution on X × Y with R∗

L1,P
< ∞,

R∗L2,P
<∞. For s > 0 we write

B(s) :=
{
x ∈ X : A(x) 6= T and δmax

(
h(x), P (.|x), x

)
< sh(x)

}
.

If there are constants c > 0 and α ∈ (0,∞] with∫
1B(s)h dPX ≤ (c s)α (21)

for all s > 0, then for all measurable f : X → T we have

RL1,P (f)−R∗L1,P ≤ 2 c
α

α+1
(
RL2,P (f)−R∗L2,P

) α
α+1 .

The above theorem can be used in various settings, but for brevity’s sake we only refer to
Remark 3.20, Remark 4.4, and Theorem 4.33. Moreover, we have already indicated that Theorem
3.9 improves the inequalities we obtained for general target losses L1 in various cases. The following
two remarks illustrate this:

Remark 3.10 Let L1 be a detection loss with h = 1X , and assume that Condition (15) is satisfied for some
b : X → [0,∞] with b−1 ∈ Lp(PX) and q ≥ p+1

p . Then Theorem 2.18 gives

RL1,P (f)−R∗
L1,P ≤ ‖b−1‖

1
q

Lp(PX)

(
RL2,P (f)−R∗

L2,P

) 1
q . (22)
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However, we also have B(s) ⊂ {x ∈ X : b(x) < s}, and since b−1 ∈ Lp(PX) implies PX({x ∈ X : b(x) <
s}) ≤

(
‖b−1‖p s

)p, we find (21) for c := ‖b−1‖Lp(PX) and α := p. Consequently, Theorem 3.9 yields

RL1,P (f)−R∗
L1,P ≤ 2 ‖b−1‖

p
p+1

Lp(PX)

(
RL2,P (f)−R∗

L2,P

) p
p+1 . (23)

Now recall that Theorem 2.18 required 1
q ≤

p
p+1 , and therefore (23) is sharper than (22) whenever the excess

risk RL2,P (f)−R∗
L2,P

is sufficiently small and q > 1 + 1/p.

Remark 3.11 Let L1 be a detection loss and L2 be a loss that is uniformly L1-calibrated with respect to
some class Q of distributions. If δmax(.,Q) ≥ εq for some q > 1 and all ε ≥ 0 then Theorem 2.13 gives

RL1,P (f)−R∗
L1,P ≤

(
RL2,P (f)−R∗

L2,P

) 1
q (24)

for all measurable f : X → R. However, it holds B(s) ⊂ {x ∈ X : 0 < h(x) < s1/(q−1)}, and consequently, if
we have

PX
({
x ∈ X : 0 < h(x) < s

})
≤ (C s)β (25)

for some constants C > 0, β ∈ (0,∞], and all s > 0, then it is easy to check that (21) is satisfied for
c = C

βq−β
β+1 and α := β+1

q−1 . Theorem 3.9 then yields

RL1,P (f)−R∗
L1,P ≤ 2C

βq−β
β+q

(
RL2,P (f)−R∗

L2,P

) β+1
β+q . (26)

Now note that we always have β+1
β+q > 1

q , and thus (26) is sharper than (24) whenever the excess risk
RL2,P (f)−R∗

L2,P
is sufficiently small.

3.4 Self-calibrated Loss Functions

Given a loss function L and a distribution P such that an exact minimizer f∗L,P of RL,P (.) exists
one may ask whether, and in which sense, ε-approximate minimizers fε of RL,P (.) approximate
f∗L,P . The goal of this subsection is to provide some general answers to these questions.

Interestingly, this question and its answers are important for both practical applications of learn-
ing algorithms as well as for theoretical considerations. For example, in binary classification (see
the next section for a formal definition of this learning problem) one is often not only interested
in finding a good classifier f but also an estimate of the conditional probability P (y = 1|x). Now
assume that one has obtained a classifier f by using a learning algorithm which is L-risk consistent
for a suitable surrogate L of the classification loss. If the minimizer f∗L,P of this loss has a one-
to-one correspondence to the conditional probability and we have a positive answer to the above
question one can then use a suitable transformation of f(x) to estimate P (y = 1|x). An important
non-trivial example of such a loss function is discussed in Example 4.5. Moreover, by combining
the results of this subsection with (41) and Example 4.22 one can for example address the question
in which sense the absolute distance loss can be used to estimate the (conditional) median in a
regression problem. Finally, some positive insight into the above question can also give powerful
tools to establish variance bounds which recently turned out to be important for establishing “fast
rates” for learning algorithms (see Remark 4.26 for some further discussion).

In the hope that we have convinced the reader of the importance of the above question we now
begin with the following definition which introduces another important class of loss functions:

Definition 3.12 (Template loss) Let Q be a class of distributions on Y . Then we call a function
L : Q×R → [0,∞] a template loss function if for all Q-type distributions P on X×Y the P -instance
LP of L defined by

LP : X × R → [0,∞]
(x, t) 7→ L

(
P (.|x), t

)
,

(27)
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is measurable.

Again, the main condition of the above definition is the measurability which enables us to interpret
the P -instances of L as unsupervised loss functions. In particular, we can define the risk of a
template loss function by the risk of its P -instance, namely

RL,P (f) := RLP ,P (f) =
∫
X
L

(
P (.|x), f(x)

)
dPX(x) ,

where f : X → R is a measurable function. Consequently, we define the inner risks of a template
loss L : Q× R → [0,∞] analogously to the inner risks of unsupervised losses, i.e. we write

CL,Q(t) := L(Q, t), and C∗L,Q := inf
t′∈R

L(Q, t′)

for Q ∈ Q, t ∈ R. Note that the right hand sides of these definitions have the form we used for
unsupervised losses in the sense that no integrals occur while the left hand sides have the form we
obtained for supervised losses in the sense that the inner risks are independent of x.

Having defined the inner risks we write, as usual, ML,Q(ε) := {t ∈ R : CL,Q(t) < C∗L,Q + ε},
Q ∈ Q, ε > 0, for the corresponding sets of approximative minimizers. Moreover, given a supervised
surrogate loss L2 we define the calibration function δmax(., Q) : [0,∞] → [0,∞] by

δmax(ε,Q) := δmax,L,L2(ε,Q) := inf
t∈T

t6∈ML,Q(ε)

CL2,Q(t)− C∗L2,Q , ε ∈ [0,∞],

if C∗L2,Q
<∞, and by δmax(ε,Q) := ∞ otherwise. Since in the proofs of Lemma 2.9 and Lemma 2.16

we have not used that the inner risks are defined by integrals, it is then not hard to see that both
lemmas also hold for the above calibration function. Consequently, we say that L2 is L-calibrated
with respect to Q if

δmax(ε,Q) > 0

for all ε > 0 and Q ∈ Q. Analogously, we say that L2 is uniformly L-calibrated with respect to Q
if δmax(ε,Q) := infQ∈Q δmax(ε,Q) > 0 for all ε > 0. If we now consider a P -instance LP of L we
immediately obtain

δmax,LP ,L2(ε, P (.|x), x) = δmax,L,L2(ε, P (.|x)) , ε ∈ [0,∞], x ∈ X. (28)

In other words, the L-calibration of L2 can be investigated analogously to supervised losses, i.e. in
terms of Q, while the resulting calibration statements can be used to determine the relation between
the excess L2-risk and the excess risk of the unsupervised loss LP .

In order to give a first interesting example of template losses let us now turn to our initial
question, namely the approximation properties of approximate risk minimizers. To this end let
L : Y × R → [0,∞] be a supervised loss function. We write

Qmin(L) :=
{
Q : Q is a distribution on Y with ML,Q(0+) 6= ∅

}
, (29)

i.e. Qmin(L) contains the distributions on Y whose inner L-risks have at least one exact minimizer.
Furthermore, for Q ∈ Qmin(L) and t ∈ R we define

L̆(Q, t) := dist
(
t,ML,Q(0+)

)
:= inf

t′∈ML,Q(0+)
|t− t′| , (30)

i.e. L̆(Q, t) measures the distance of t to the set of elements t′ ∈ R minimizing CL,Q(.). Now the
following fundamental lemma ensures that the above quantity defines a template loss function:
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Lemma 3.13 Let L : Y ×R → [0,∞] be a supervised loss function. Then L̆ : Qmin(L)×R → [0,∞)
defined by (30) is a template loss function.

It is almost needless to say that the main statement of the above lemma is again the measurability
of the instances of L̆.

Now note that the definition of L̆ immediately gives C∗
L̆,Q

= 0, and therefore we have

ML̆,Q(ε) =
{
t ∈ R : L̆(Q, t) < ε

}
=

{
t ∈ R : ∃t′ ∈ML,Q(0+) with |t− t′| < ε

}
(31)

for all Q ∈ Qmin(L) and ε ∈ [0,∞]. Furthermore, we have already mentioned, that the results
of Lemma 2.9 remain true for template losses. By Inequality (9) the self-calibration function
δmax,L̆,L(., Q) which can be computed by

δmax,L̆,L(ε,Q) = inf
t∈R

dist(t,ML,Q(0+)≥ε

CL,Q(t)− C∗L,Q

thus satisfies
δmax,L̆,L(dist(t,ML,Q(0+)), Q) ≤ CL,Q(t)− C∗L,Q

for all Q ∈ Qmin(L) and all t ∈ R. Note that if ML,Q(0+) contains a single element t∗Q then the
latter inequality becomes

δmax,L̆,L(|t− t∗Q|, Q) ≤ CL,Q(t)− C∗L,Q , (32)

and consequently, the calibration function quantifies how well an approximate CL,Q(.)-minimizer t
approximates the exact minimizer t∗Q. This motivates the following definition:

Definition 3.14 (Self-calibration) Let L : Y × R → [0,∞] be a supervised loss function and
Q ⊂ Qmin(L). We say that L is (uniformly) self-calibrated with respect to Q, if L is (uniformly)
L̆-calibrated with respect to Q.

If L is a supervised convex loss function then ML,Q(0+) is an interval, and hence (31) together
with the proof of Lemma 2.11 immediately gives the following result:

Lemma 3.15 (Self-calibration of convex losses) Every supervised convex loss function L :
Y × R → [0,∞) is self-calibrated with respect to Qmin(L).

Note that we will see some examples in Section 4.3 showing that in general supervised convex
losses are not uniformly self-calibrated. In general, we consequently cannot expect strong inequal-
ities in the sense of Theorem 2.13 for the self-calibration problem. However, even the somewhat
weak self-calibration established in Lemma 3.15 can be used to get interesting results for convex
loss functions. This is discussed in Remark 3.18 which is a consequence of the following proposition
showing that for self-calibrated loss functions, approximate risk minimizers approximate the Bayes
decision functions:

Theorem 3.16 Let L : Y × R → [0,∞) be a supervised loss function that is self-calibrated with
respect to some Q ⊂ Qmin(L), and P be a distribution of Q-type with R∗

L,P < ∞. Then for all
ε > 0 and ρ > 0 there exists a δ > 0 such that for all measurable f : X → R we have

RL,P (f) < R∗L,P + δ =⇒ PX
({
x ∈ X : L̆P

(
x, f(x)

)
≥ ρ

})
< ε .

Remark 3.17 In [26] a similar though technically more complicated version of the above theorem has
already been proved for binary classification problems.
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Remark 3.18 Let L be a convex supervised loss such that the sets ML,P (.|x),x(0+) are singletons. By
Theorem 3.2 there then exists a PX -almost surely unique minimizer f∗L,P of RL,P (.), and thus we have
L̆P (x, t) = |t − f∗L,P (x)| for PX -almost all x ∈ X. Moreover, the assumptions of the above theorem
are obviously satisfied, and consequently we obtain fn → f∗L,P in probability for all sequences (fn) with
RL,P (fn) → R∗

L,P . In other words, approximate risk minimizers approximate the unique risk minimizer
f∗L,P in probability.

Of course, the approximation in probability discussed in the previous remark is a somewhat weak
notion and therefore let us finally describe situations in which we can replace it by a stronger notion
of approximation:

Proposition 3.19 Let L : Y ×R → [0,∞) be a supervised loss function that is self-calibrated with
respect to some Q ⊂ Qmin(L), and P be a distribution of Q-type with R∗L,P < ∞. Assume that
there exist p ∈ (0,∞], q > 0, and a function b : X → [0,∞] with b−1 ∈ Lp(PX) and

δmax,L̆P ,L
(ε, P (.|x), x) ≥ εq b(x) , ε > 0, x ∈ X.

Then for all measurable f : X → R we have(∫
X

(
L̆P (x, f(x))

) pq
p+1 dPX(x)

) p+1
pq

≤ ‖b−1‖
1
q

Lp(PX)

(
RL,P (f)−R∗

L,P

) 1
q
.

Remark 3.20 If RL,P (.) has an almost surely unique minimizer f∗L,P then Proposition 3.19 ensures ‖.‖ pq
p+1

-
convergence of fn to f∗L,P whenever we have RL,P (fn) → R∗

L,P . Interestingly, if we can only ensure b−1 ∈
Lp,∞(PX), where Lp,∞(PX) is a Lorentz space (see e.g. [3]), then the norm ‖.‖ pq

p+1
in the above proposition

can be replaced by the Lorentz-norm ‖.‖ pq
p+1 ,∞ if we combine Theorem 3.9 with the proof of Theorem 3.16.

4 Examples

In this section we apply the general theory of Section 2 to various loss functions of common learn-
ing scenarios such as (cost-sensitive) binary classification, regression, density level detection, and
density estimation.

4.1 Standard Binary Classification

In this subsection we investigate surrogate loss functions for the binary classification problem.
Since such classification calibrated loss functions have already been intensively studied by Bartlett
et al. in [1], our main aim in this subsection is to briefly discuss the relationship between their
results and our general framework. In addition, the concepts developed in this subsection will be
needed in the following subsections when dealing with cost-sensitive classification and density level
detection.

Let us begin with briefly recalling the standard binary classification problem. To this end let
Y := {−1, 1} and T := R throughout the subsection. Our target loss is the supervised loss function
Lclass : Y × R → [0,∞) defined by

Lclass(y, t) := 1(−∞,0]

(
y sign t

)
, y ∈ Y, t ∈ R, (33)

where we use the convention sign 0 := 1. For a given distribution P on X×Y an easy computation
then shows that RLclass,P (f) is the classification risk discussed in the introduction.

In the following, QY denotes the set of all distributions on Y . We say that a supervised loss
function L is (uniformly) classification calibrated if it is (uniformly) Lclass-calibrated with respect to
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QY . Furthermore observe that any distribution Q ∈ QY can be uniquely described by an η ∈ [0, 1]
using the identification η = Q({1}). If L is a supervised loss function we therefore use the notations

CL,η(t) := CL,Q(t), C∗L,η := C∗L,Q, ML,η(ε) := ML,Q(ε), and δmax(ε, η) := δmax(ε,Q)

for t ∈ R and ε > 0. Now our first aim is to compute MLclass,η(ε) and δmax(ε, η):

Lemma 4.1 Let L : Y × R → [0,∞) be a supervised loss function. Then for all η ∈ [0, 1], ε > 0
we have

δmax(ε, η) =

{
∞ if ε > |2η − 1|,
inft∈R:(2η−1) sign t≤0 CL,η(t)− C∗L,η if ε ≤ |2η − 1|.

Proof: For t ∈ R a well-known and easy calculation shows

CLclass,η(t)− C
∗
Lclass,η

=
∣∣2η − 1

∣∣ · 1(−∞,0]

(
(2η − 1) sign t

)
. (34)

Now if ε > |2η − 1| we obviously have CLclass,η(t) − C∗Lclass,η
< ε for all t ∈ R and hence we obtain

MLclass,η(ε) = R. On the other hand for ε ≤ |2η − 1| we have CLclass,η(t)− C∗Lclass,η
< ε if and only

if (2η − 1) sign t > 0, and hence MLclass,η(ε) = {t ∈ R : (2η − 1) sign t > 0}.

In the following we will restrict our considerations to the following class of supervised loss func-
tions used in many classification algorithms.

Definition 4.2 A supervised loss function L : Y ×R → [0,∞) is called margin-based if there exists
a ϕ : R → [0,∞) with L(y, t) = ϕ(yt) for all y ∈ Y and all t ∈ R.

Note that the classification loss Lclass is not margin-based, but many other loss functions are. For
some examples we refer to Table 1. Now one of the main results on margin-based losses established
in [1] reads as follows:

Theorem 4.3 Let L be a margin-based loss function. Then the following are equivalent:

i) L is classification calibrated.

ii) L is uniformly classification calibrated.

iii) The function H : [0, 1] → [0,∞) defined by

H(η) := inf
t∈R:(2η−1)t≤0

CL,η(t)− C∗L,η, η ∈ [0, 1], (35)

satisfies H(η) > 0 for all η ∈ [0, 1] with η 6= 1/2.

Furthermore, for δ : [0, 1] → [0,∞) defined by δ(ε) := H(1+ε
2 ), ε ∈ [0, 1], we have

δ∗∗(ε) ≤ δ∗∗max(ε,QY ) , ε ∈ [0, 1], (36)

and both quantities are actually equal whenever L is continuous.

The above theorem shows that for binary classification, calibration coincides with uniform cali-
bration, and consequently a positive answer to Question 1 automatically gives a positive answer to
Question 2. Moreover, in order to find the corresponding inequality, it suffices to compute the func-
tion H (or the calibration function for continuous surrogates). For many interesting loss functions
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Name of loss function ϕ(t) for t ∈ R H(η) for η ∈ [0, 1] δ∗∗(ε) for ε ∈ (0, 1]

Hinge loss max{0, 1− t} |2η − 1| ε

Truncated least squares
(
max{0, 1− t}

)2 (2η − 1)2 ε2

Least squares (1− t)2 (2η − 1)2 ε2

Exponential loss exp(−t) 1− 2
√
η(1− η) 1−

√
1− ε2

Sigmoid loss 1− tanh(t) |2η − 1| ε

Logistic loss ln(1 + e−t) ln 2+η ln η+(1−η)ln(1−η) (1+ε)ln(1+ε)+(1−ε)ln(1−ε)
2

Table 1: Some common margin-based loss functions and the corresponding values for H(η) and δ∗∗ defined
in Theorem 4.3. All results are taken from [1] besides the ones for the least squares loss and the logistic loss.

this has already been done by Bartlett et al. in [1]. Their results together with the corresponding
values of the function δ∗∗ defined in Theorem 4.3 are summarized in Table 1. Finally, recall that if
L is a convex margin-based loss function then it was shown in [1] that L is classification calibrated
if and only if its associated ϕ is differentiable at 0 with ϕ′(0) < 0. In addition, in this case [1,
Theorem 4] shows the simple formula

δ∗∗max(ε,QY ) = ϕ(0)− C∗
L, 1+ε

2

, ε ∈ [0, 1].

Remark 4.4 It is interesting to note that Equation (34) can be used to describe the classification loss by
a detection loss function. Indeed, if for a given distribution P on X × Y we write

LP (x, t) :=
∣∣2η(x)− 1

∣∣ · 1(−∞,0]

(
(2η(x)− 1) sign t

)
, x ∈ X t ∈ R,

then LP : X × R → [0,∞) is a detection loss with h(x) = |2η(x)− 1|, x ∈ X, and (34) states

CLclass,η(x)(t)− C
∗
Lclass,η(x)

= CLP ,x(t)− C∗LP ,x

for all x ∈ X, t ∈ R. Furthermore, Condition (25) is then a weaker version of Tsybakov noise assumption in
the sense of [29], and the resulting inequality of Theorem 3.9 essentially coincides with that of [1, Thm. 10].
In this regard it is also interesting to note that the function δ∗∗(ε) for the logistic loss (see Table 1) behaves
like ε2, so that for this loss the inequality of Theorem 3.9 can be substantially simplified.

Sometimes, practical classification problems do not only require a small classification risk but
also an estimate of the conditional probability η(x) = P (y = 1|x), x ∈ X. If we have a margin-
based loss function L for which there is a one-to-one transformation between the sets of minimizers
ML,η(0+) and η then it seems natural to use self-calibration properties of L to investigate whether
suitably transformed approximate L-risk minimizers approximate η. This approach is discussed in
the following example:

Example 4.5 (Estimating the conditional probabilities with the logistic loss) Let Llogist be the
logistic loss defined by ϕ(t) = ln(1 + e−t), t ∈ R. Then it is well-known that

MLlogist,η(0
+) =

{
ln

( η

1− η

)}
, η ∈ (0, 1).

In other words, if tη denotes the element contained in MLlogist,η(0
+) then we have η = 1

1+e−tη . Consequently,
if t approximately minimizes CLlogist,η(.) then it is close to tη by Lemma 3.15 and hence 1

1+e−t can serve as
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an estimate of η. However, investigating the quality of this estimate by the self-calibration function of Llogist

causes some technical problems since Llogist is only self-calibrated with respect to the distributions Q ∈ QY
with Q({1}) 6= 0, 1. Consequently, we now assess the quality of the above estimate directly. To this end we
define L : QY × R → [0,∞) by L(η, t) :=

∣∣η − 1
1+e−t

∣∣, η ∈ [0, 1], t ∈ R. Then L is template loss function
which measures the distance between η and its estimate in the sense of the above discussion. Let us compute
the calibration function of (L,Llogist). To this end we first observe that C∗L,η = 0 for all η ∈ [0, 1], and hence
we have ML,η(ε) = {t ∈ R : L(η, t) < ε}. Consequently, for Cη(t) := CLlogist,η(t)−C∗Llogist,η

Lemma 2.11 gives

δmax,L,Llogist(ε, η) = min
{
Cη

(
ln

( η − ε

1− η + ε

)
+

)
, Cη

(
− ln

(1− η − ε

η + ε

)
+

)}
,

where we use the convention (x)+ := max{0, x}, x ∈ R, and Cη(±∞) := ∞. From this we can easily
conclude δmax,L,Llogist(ε, η) = δmax,L,Llogist(ε, 1−η) for all ε ≥ 0, η ∈ [0, 1]. Moreover, for fixed ε ∈ (0, 1/2)
and ε < η < 1− ε some calculations show

η ln
η

η − ε
+ (1− η) ln

1− η

1− η + ε
≤ η ln

η

η + ε
+ (1− η) ln

1− η

1− η − ε

if and only if η ≥ 1
2 , and consequently for η ∈ [0, 1/2] we find

δmax,L,Llogist(ε, η) =

{
η ln η

η+ε + (1− η) ln 1−η
1−η−ε if ε < 1− η

∞ else.

In order to investigate whether Llogist is L-calibrated with respect to QY let us now find a simple lower
bound of the above calibration function. To this end let h(η) := η ln η

η+ε . Then its derivative satisfies

h′(η) = ln
η

η + ε
+

ε

η + ε
= ln

(
1− ε

η + ε

)
+

ε

η + ε
≤ − ε

η + ε
+

ε

η + ε
= 0 ,

and hence we find η ln η
η+ε ≥

1
2 ln 1

1+2ε for all η ∈ [0, 1/2], ε ≥ 0. Analogously, we obtain (1− η) ln 1−η
1−η−ε ≥

ln 1
1−ε , for η ∈ [0, 1/2], ε ∈ [0, 1− η). Both estimates together then yield

δmax,L,Llogist(ε, η) ≥
1
2

ln
1

1 + 2ε
+ ln

1
1− ε

≥ ε2

for all η ∈ [0, 1/2], ε ∈ [0, 1− η). From this we easily can conclude that Llogist is uniformly L-calibrated with
respect QY with δmax,L,Llogist(ε,QY ) ≥ ε2 for all ε ≥ 0. If we now consider the squared version L2 of L then
we obviously have δmax,L2,Llogist(ε,QY ) = δmax,L,Llogist(

√
ε,QY ) ≥ ε for all ε ≥ 0. For measurable f : X → R

Theorem 2.13 consequently gives(∫
X

∣∣∣η(x)− 1
1 + e−f(x)

∣∣∣2 dPX(x)
)1/2

≤
√
RLlogist,P (f)−R∗

Llogist,P
,

i.e. the we can assess the quality of the estimate 1
1+e−f(x) in terms of the ‖.‖2-norm.

4.2 Cost-sensitive Binary Classification

In this section we investigate surrogate loss functions for a simple class of cost-sensitive binary
classification problems (see [10] for a definition of general cost-sensitive binary classification). Unlike
in standard binary classification, in the considered cost-sensitive binary classification scenario the
two types of errors are assigned different costs. To make this precise, let α ∈ (0, 1) be a real number,
Y := {−1, 1}. Then our target loss is the supervised loss function Lα-class : Y ×R → [0,∞) defined
by

Lα-class(y, t) :=


1− α if y = 1 and t < 0
α if y = −1 and t ≥ 0
0 otherwise.

(37)
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Obviously Lα-class is a supervised loss function and we have 2L 1
2
-class = Lclass. As in the standard

case we begin with computing the calibration function.

Lemma 4.6 Let L : Y ×R → [0,∞) be a supervised loss function. Then for all α ∈ (0, 1), η ∈ [0, 1]
and all ε > 0 we have

δmax(ε, η) =

{
∞ if ε > |η − α|,
inft∈R:(η−α) sign t≤0 CL,η(t)− C∗L,η if ε ≤ |η − α|.

Proof: A simple calculation shows CLα-class,η(t)− C
∗
Lα-class,η =

∣∣η − a
∣∣ · 1(−∞,0]

(
(η − α) sign t

)
, and

thus the assertion follows as in the proof of Lemma 4.1.

Using a weighted version of the standard binary classification loss is a somewhat old idea in
machine learning (see e.g. [10]). In the following we will focus on the question whether weighted
versions of margin-based losses can serve as a surrogate for the cost-sensitive loss defined by (37).
To this end let L be a margin-based loss function with corresponding function ϕ : R → [0,∞). For
α ∈ (0, 1) we define the α-weighted version Lα of L by

Lα(y, t) :=

{
(1− α)ϕ(t) if y = 1
αϕ(−t) if y = −1,

t ∈ R.

Moreover, when considering these weighted versions, we frequently use the quantities

wα(η) := (1− α)η + α(1− η) and ϑα(η) :=
(1− α)η

(1− α)η + α(1− η)

which are defined for all η ∈ [0, 1]. Now we can characterize when weighted versions of margin
based loss functions are Lα-class-calibrated.

Theorem 4.7 For a margin-based loss L and α ∈ (0, 1) the following statements are equivalent:

i) Lα is uniformly Lα-class-calibrated with respect to QY .

ii) Lα is Lα-class-calibrated with respect to QY .

iii) L is classification calibrated.

iv) The function Hα : [0, 1] → [0,∞) defined by

Hα(η) := inf
t∈R:(η−α)t≤0

CLα,η(t)− C∗Lα,η, η ∈ [0, 1],

satisfies Hα(η) > 0 for all η ∈ [0, 1] with η 6= α.

Furthermore, if one of the statements is true and H is defined by (35) then we have

Hα(η) = wα(η)H
(
ϑα(η)

)
. (38)

Proof: Some easy calculations show 2ϑα(η)− 1 = η−α
(1−α)η+α(1−η) and |η − α| ≤ |2ϑα(η)− 1|. Now

let δmax(ε, η) be defined with respect to Lclass and L, and δmax,α(ε, η) be defined with respect to
Lα-class and Lα. Then for ε ≤ |η − α| our preliminary considerations yield

δmax,α(ε, η) = inf
t∈R

(η−α) sign t≤0

CLα,η(t)− C∗Lα,η = wα(η) inf
t∈R

(2ϑα(η)−1) sign t≤0

CL,ϑα(η)(t)− C∗L,ϑα(η)

= wα(η)δmax(ε, ϑα(η)) .
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Name of loss function H(η) Hα(η) δ∗∗α (ε)

Hinge loss |2η − 1| |η − α| ε

Truncated least squares (2η − 1)2 (η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

Least squares (2η − 1)2 (η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

Exponential loss 1− 2
√
η(1−η) α+ η− 2αη+ 2A0

√
η(1−η) 2A0(A0−Aε)+ε(2α−1)

Sigmoid loss |2η − 1| |η − α| ε

Table 2: The functions H, Hα and δ∗∗α for some common margin-based losses. For the exponential loss we
used the abbreviation Aε :=

√
(α− ε)(1− α+ ε), ε ≥ 0. Furthermore we omitted the logistic loss because

the corresponding formulas a too long to fit into the table. Note that for the hinge loss and the sigmoid loss
the function δ∗∗α is actually independent of α.

From this we immediately obtain the equivalence of ii) and iii). Furthermore, i) ⇒ ii) is trivial,
and iii) ⇒ i) follows from δmax,α(ε, η) = wα(η)δmax(ε, ϑα(η)) ≥ min{α, 1 − α}δmax(ε, ϑα(η)) and
Theorem 4.3. Now, if L is classification calibrated, iii) of Theorem 4.3 yields

CLα,η(0) = wα(η) CL,ϑα(η)(0) > wα(η) C∗L,ϑα(η) = C∗Lα,η ,

and hence Lemma 4.6 together with ii) implies Hα(η) > 0 for all η 6= α. Conversely, if iv)
holds then we have δmax,α(ε, η) ≥ Hα(η) > 0 for η 6= α and 0 < ε ≤ |η − α|, and hence La
is Lclass-calibrated with respect to QY . Finally the proof of (38) is analogous to the proof of
δmax,α(ε, η) = wα(η)δmax(ε, ϑα(η)).

Remark 4.8 The above results can be used to obtain inequalities between the excess risks of Lα-class and
α-weighted versions of margin-based, classification calibrated loss functions. In order to find such inequalities
let us write

δα(ε) := inf
η∈[0,1]
|η−α|≥ε

Hα(η) ,

where αmax := max{α, 1− α} and ε ∈ [0, αmax]. For ε ∈ [0, αmax] Lemma 4.6 then yields

inf
Q∈QY

δmax(ε,Q) = inf
η∈[0,1]
|η−α|≥ε

inf
t∈R

(η−α) sign t≤0

CLα,η(t)− C∗Lα,η ≥ inf
η∈[0,1]
|η−α|≥ε

Hα(η) ,

and consequently we have
δ∗∗α (ε) ≤ δ∗∗max(ε,QY ) .

Moreover, it is obvious that for continuous L we even have equality in the above formula. Furthermore, for
some loss functions we already know H(η), η ∈ [0, 1], and hence the computation of δ∗∗α (ε) is straightforward.
The corresponding results are summarized in Table 2.

Up to now we have only considered α-weighted versions of classification calibrated loss functions
to get Lα-class-calibrated loss functions. We finally show that this is in some sense the only choice:

Proposition 4.9 Let α, β ∈ (0, 1), L be a margin-based classification calibrated loss function, and
Lβ be its β-weighted version. Then Lβ is Lα-class-calibrated if and only if β = α.
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Proof: We have already seen Lα is Lα-class-calibrated, and therefore let us now assume α 6= β.
Without loss of generality we only consider the case β > α. Then for a fixed η ∈ (α, β) an easy
computation shows ϑβ(η) < 1

2 , and hence for ε > 0 with ε ≤ |η − α| we obtain

δmax(ε, η) = inf
(n−α) sign t≤0

CLα,η(t)− C∗Lα,η = wβ(η) inf
t<0

CL,ϑβ(η)(t)− C∗L,ϑβ(η) . (39)

Furthermore, since L is classification calibrated we have inft≥0 CL,ϑβ(η)(t)− C∗L,ϑβ(η) > 0, and since
inft∈R CL,ϑβ(η)(t) − C∗L,ϑβ(η) = 0 we find inft<0 CL,ϑβ(η)(t) − C∗L,ϑβ(η) = 0. Together with (39) this
shows that Lβ is not Lα-class-calibrated.

Remark 4.10 Note that the above proposition in particular shows that an α-weighted version of a classifica-
tion calibrated margin-based loss function is classification calibrated (in the sense of the previous subsection)
if and only if α = 1

2 . In other words, changing the weights produces a loss function which is not classification
calibrated, and hence this often used heuristic for unbalanced datasets may lead to systematical errors.

4.3 Regression

In this subsection we investigate the use of surrogate loss functions for regression problems. Recall,
that the general goal in regression is to predict real-valued outputs, i.e. the label space Y is either
the entire real line R or an interval. The most commonly used loss function for regression is the
least squares loss Llsquares defined by Llsquares(y, t) := (y − t)2. However, this loss is known to be
sensitive against outliers, and hence one of our goals is to identify Llsquares-calibrated loss functions.
Furthermore, we investigate the problem of finding the mean for symmetric noise distributions and
discuss self-calibration for a class of loss functions often employed in regression problems. Let us
begin by introducing this type of loss functions:

Definition 4.11 Let L : R× R → [0,∞) be a supervised loss function. We say that L is:

i) distance-based if there is a ψ :R → [0,∞) with ψ(0) = 0 and L(y, t) = ψ(y−t) for all y, t ∈ R.

ii) symmetric if L is distance-based and its associated ψ satisfies ψ(r) = ψ(−r) for all r ∈ R.

Obviously, the least squares loss, and more general, the Lp-loss functions, p > 0, defined by
|y − t|p are symmetric. Moreover the logistic loss for regression, Huber’s loss and the ε-insensitive
loss are further examples of symmetric loss functions (see also Table 3).

The following definition introduces some important notions for distance-based loss functions:

Definition 4.12 Let p > 0 and L : R×R → [0,∞) be a distance-based loss function with associated
ψ : R → [0,∞). We say that L is:

i) (strictly, uniformly) convex if ψ is (strictly, uniformly) convex.

ii) of growth type p if there are c1, c2 > 0 with c1rp ≤ ψ(r) ≤ c2r
p for all sufficiently large r.

iii) locally Lipschitz continuous if for all a > 0 the restriction ψ|[−a,a] is Lipschitz continuous.

For our analysis we also need some notions related to distributions on R. To this end let Q be a
distribution on Y := R with finite first moment, i.e. |Q|1 := Ey∼Q|y| <∞. Then the mean of Q is

EQ :=
∫
Y
y dQ(y) .
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We callQ symmetric around some center c ∈ R, ifQ(c+A) = Q(c−A) for all measurable A ⊂ [0,∞).
It is not hard to see that the mean EQ is the only center whenever |Q|1 <∞. Furthermore we say
that Q is symmetric if it is symmetric around some c ∈ R. Obviously, Q is symmetric around c if
and only if its centered version Q(c) defined by Q(c)(A) := Q(c+A), A ⊂ R measurable, is centered
around 0. In the following we denote the set of distributions with first finite moment by QR, and
the set of distributions with support contained in the bounded interval I by QI . Moreover, we write

Qbounded :=
⋃
M>0

Q[−M,M ] ,

for the set of distributions with bounded support. Clearly we have QI ⊂ Qbounded ⊂ QR for
all bounded intervals I, and if L is a continuous, distance-based loss function we actually have
Qbounded ⊂ QR(L). Moreover, we denote the set of all symmetric distributions with first finite
moment by Qsym. Finally, the sets QI,sym for I ⊂ R being bounded interval, and Qbounded,sym are
defined in the obvious way.

Our first goal is to identify distance-based, Llsquares-calibrated loss functions L. To this end recall

MLlsquares,Q(0+) = {EQ}

for all Q ∈ Q(Llsquares), and consequently, if L is a Llsquares-calibrated loss function then we must
have ML,Q(0+) ⊂ {EQ} for all Q ∈ Q(L). This observation motivates the following two proposi-
tions in which we investigate the sets ML,Q(0+) for distance-based loss functions.

Proposition 4.13 Let L be a convex, distance-based loss function whose associated ψ satisfies
limr→±∞ ψ(r) = ∞, and let Q ∈ QR with CL,Q(t) <∞ for all t ∈ R. Then ML,Q(0+) is a compact,
non-empty interval. Moreover, if ψ is strictly convex then ML,Q(0+) contains exactly one element.

Proof: Our first goal is to show that limt→±∞ CL,Q(t) = ∞. To this end let (tn) ⊂ R be a
sequence with tn → −∞, and B > 0. Since limr→±∞ ψ(r) = ∞ there then exists an r0 > 0
such that ψ(r) ≥ 2B for all r ∈ R with |r| ≥ r0. Since Q(R) = 1 there is also an M > 0 with
Q([−M,M ]) ≥ 1/2. Finally, there exists an n0 ≥ 1 with tn ≤ −M − r0 for all n ≥ n0. For
y ∈ [−M,M ] this yields y − tn ≥ r0, and hence we find ψ(y − tn) ≥ 2B for all n ≥ n0. From this
we easily find

CL,Q(tn) ≥
∫

[−M,M ]
ψ(y − tn) dQ(y) ≥ 2BQ

(
[−M,M ]

)
= B ,

i.e. we have shown CL,Q(tn) →∞. Analogously we can show limt→∞ CL,Q(t) = ∞, and consequently
we have limt→±∞ CL,Q(t) = ∞. Furthermore, the convexity of ψ implies that t 7→ CL,Q(t) is convex
and hence it is continuous by the assumption CL,Q(t) <∞, t ∈ R. Now the assertions follow.

Note that for distributions Q ∈ Qbounded we automatically have CL,Q(t) < ∞ for all t ∈ R.
Furthermore, if L is of some growth type p then we have CL,Q(t) < ∞ for all t ∈ R and all
Q ∈ QR(L). Consequently, the above proposition gives ML,Q(0+) 6= ∅ in both cases.

The following proposition compares ML,Q(0+) with the mean EQ. Note that a similar result
was independently found by A. Caponnetto in [6].

Proposition 4.14 Let M > 0, and L be a distance-based, locally Lipschitz continuous loss function
with associated ψ. Then we have:

i) If EQ ∈ML,Q(0+) for all Q ∈ Q[−M,M ],sym, then L is symmetric.
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ii) If EQ ∈ML,Q(0+) for all Q ∈ Qbounded, then there exists a constant c ≥ 0 with L = cLlsquares.

Proof: Recall that the fundamental theorem of calculus for Lebesgue integrals shows that the
derivative ψ′ is (Lebesgue)-almost surely defined and integrable on every bounded interval.
i). Let us fix a y ∈ [−M,M ] such that ψ is differentiable at y and−y. We defineQ := 1

2δ{−y}+
1
2δ{y}.

Then we haveQ ∈ Qsym with EQ = 0, and CL,Q(t) = 1
2ψ(−y−t)+ 1

2ψ(y−t). Therefore the derivative
of CL,Q(.) exists at 0 and can be computed by C′L,Q(0) = −1

2ψ
′(−y) − 1

2ψ
′(y). Furthermore, our

assumption shows that CL,Q(.) has a minimum at 0, and hence we have 0 = C′L,Q(0), i.e. ψ′(−y) =
−ψ′(y). According to our preliminary remark, this equality holds for almost all y, and thus the
fundamental theorem of calculus for Lebesgue integrals shows that for all y0 ∈ R we have

ψ(y0) = ψ(0) +
∫ y0

0
ψ′(t)dt = ψ(0)−

∫ y0

0
ψ′(−t)dt = ψ(0)−

∫ 0

−y0
ψ′(t)dt = ψ(−y0) .

ii). Let y 6= 0 and α > 0 be real numbers such that ψ is differentiable at y, −y, and αy. We define
Q := α

1+αδ{0}+
1

1+αδ{(1+α)y}, so that we obtain EQ = y and CL,Q(t) = α
1+αψ(−t)+ 1

1+αψ(y+αy−t)
for all t ∈ R. This shows that the derivative of CL,Q(.) exists at y and can be computed by

C′L,Q(y) = − α

1 + α
ψ′(−y)− 1

1 + α
ψ′(αy) =

α

1 + α
ψ′(y)− 1

1 + α
ψ′(αy) ,

where in the last step we used i). Again, our assumption y ∈ ML,Q(0+) gives C′L,Q(y) = 0 and
hence we find αψ′(y) = ψ′(αy). Obviously, the latter holds for almost all α > 0 and thus we obtain

ψ(ty) = ψ(0) +
∫ t

0
ψ′(sy)y ds =

∫ t

0
sψ′(y)y ds =

ψ′(y)
2y

(ty)2

for all t > 0. From this we easily obtain the assertion.

The above proposition shows that there are only trivial distance-based surrogates for the least
squares loss if one is interested in the entire class Q(Llsquares) = {Q ∈ QR : Ey∼Qy2 < ∞}.
Furthermore, it shows that the least squares loss is essentially the only distance-based loss function
whose minimizer is the mean for all distributions in Q(Llsquares), i.e. if we are actually interested in
finding the regression function x 7→ EP (Y |x), and we just know Ex∼PX

Ey∼P (.|x)y
2 < ∞, then the

least squares loss is the only distance-based loss for this task3 However, if we cannot ensure this
tail assumption but know that the conditional distributions P (.|x) are symmetric then the above
proposition suggests that we may actually have alternatives to the least squares loss. In order to
investigate this conjecture systematically we first need a target loss function that describes the goal
of finding the mean. To this end let us consider the template loss Lmean : QR×R → [0,∞) defined
by

Lmean(Q, t) := |EQ− t| , t ∈ R , Q ∈ QR .

Note that this indeed defines a template loss since given a distribution P on X × R of QR-type it
is easy to see that (x, t) 7→ Lmean(P (.|x), t) = |EP (Y |x)− t| is measurable. Moreover we have

L2
mean(Q, t) =

(
EQ− t

)2 = CLlsquares,Q(t)− C∗Llsquares,Q

3The result in [6] shows that any convex loss function L : R × R → [0,∞) satisfying EQ ∈ ML,Q(0+) for all
Q ∈ Qbounded must be of the form L(y, t) = c · (y − t)2 + h(y), (y, t) ∈ R2, where h : R → R is a suitable function.
Consequently, other loss functions (e.g. Bregman divergences) for estimating the mean cannot be convex and hence
may lead to algorithmic problems. Whether such problems can be resolved by estimating a suitable transform of
the mean is, as far as we know, open, and because of space constraints we do not further investigate this highly
interesting question.
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for all Q ∈ Q(Llsquares) and t ∈ R. Since the minimal Lmean-risks equal 0, i.e. C∗Lmean,Q
= 0, we

consequently have MLmean,Q(
√
ε) = MLlsquares,Q(ε) for all ε > 0, and from this we obtain

δmax,Lmean,L(
√
ε,Q) = δmax,Llsquares,L(ε,Q) (40)

for all distance-based losses L, all Q ∈ Q(Llsquares) ∩ Q(L), and all ε ∈ [0,∞]. In other words,
by considering Lmean-calibration we simultaneously obtain results on Llsquares-calibration. Further-
more, if t 7→ CL,Q(t) has a unique minimum at EQ then we obviously have Lmean(Q, t) = L̆(Q, t)
for all t ∈ R, and consequently we obtain

δmax,Lmean,L(ε,Q) = δmax,L̆,L(ε,Q) , ε ∈ [0,∞]. (41)

In other words, by considering Lmean-calibration of L we will also gain some insight into the self-
calibration properties of L.

Now, the following key lemma presents an alternative way to compute the inner risks CL,Q(.)
when both L and Q are symmetric:

Lemma 4.15 Let L be a symmetric loss function with associated ψ, and Q ∈ Qsym(L). For t ∈ R
we then have

CL,Q(EQ+ t) = CL,Q(EQ− t) =
1
2

∫
R

(
ψ(y − EQ− t) + ψ(y − EQ+ t)

)
dQ(y). (42)

In addition, if L is convex we have CL,Q(EQ) = C∗L,Q, and if L is actually strictly convex we also
have CL,Q(EQ+ t) > C∗L,Q for all t 6= 0.

Proof: Let us fix a Q ∈ Qsym(L) and write m := EQ. The symmetry of Q(m) and ψ then yields

CL,Q(m+ t) =
∫

R
ψ(y− t)dQ(m)(y) =

∫
R
ψ(−y− t)dQ(m)(y) =

∫
R
ψ(y+ t)dQ(m)(y) = CL,Q(m− t).

Since this gives CL,Q(m+ t) = 1
2

(
CL,Q(m+ t) + CL,Q(m− t)

)
we also obtain the second equation.

Furthermore, if ψ is convex we can easily conclude

CL,Q(m+t) =
1
2

∫
R

(
ψ(y − t) + ψ(y + t)

)
dQ(m)(y) ≥

∫
R
ψ(y)dQ(m)(y) = CL,Q(m)

for all t ∈ R. This shows the second assertion. The third assertion can be shown analogously.

With the help of the above lemma we can derive a simple formula for the calibration function
δmax,Lmean,L(ε,Q) if L is convex:

Lemma 4.16 Let L be a symmetric, convex loss function and Q ∈ Qsym(L). Then we have

δmax,Lmean,L(ε,Q) = CL,Q(EQ+ ε)− C∗L,Q , ε ≥ 0. (43)

In particular, ε 7→ δmax,Lmean,L(ε,Q) is convex.

Proof: Obviously, we have MLmean,Q(ε) = (EQ − ε,EQ + ε). Since this set is open, it is easy to
see that the continuity assumption in Lemma 4.15 is superfluous and hence the assertion follows
by Lemma 2.11 and Lemma 4.15.
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Our next result is a rather technical lemma which will be used at various times to establish upper
bounds on δmax(ε,Q). For its formulation we need the set

Q∗sym :=
{
Q ∈ Qsym : Q

(
EQ+ (−ρ, ρ)

)
> 0 for all ρ > 0

}
which contains all symmetric distributions that do not vanish around their means. Moreover,
we also need the sets Q∗I,sym := QI ∩ Q∗sym for I being a bounded interval, and Q∗bounded,sym :=
Qbounded ∩Q∗sym. Now the result reads as follows:

Lemma 4.17 Let L be a symmetric, continuous loss function with associated ψ. Assume that there
exist δ0 ∈ R, s1, s2 ∈ R, s1 6= s2 and an ε0 > 0 such that for all ε ∈ [0, ε0] we have

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε

)
≤ δ0 . (44)

Then for M := | s1+s2
2 | + ε0 and all δ > 0 there exists a Lebesgue-absolutely continuous Q ∈

Q∗[−M,M ],sym(L) with EQ = 0 such that for t := s2−s1
2 we have

CL,Q(t)− CL,Q(0) ≤ δ0 + δ .

Furthermore, there exists a Lebesgue-absolutely continuous Q ∈ Q[−M,M ],sym(L) with EQ = 0 and

CL,Q(t)− CL,Q(0) ≤ δ0 .

Proof: We write y0 := s1+s2
2 . Furthermore, if y0 = 0 we let Q be the uniform distribution µ[−ε0,ε0]

on [−ε0, ε0]. Otherwise, we define

Q := αµ[−| y0
2
|,| y0

2
|] +

1− α

2
µ[−y0−ε0,−y0] +

1− α

2
µ[y0,y0+ε0] ,

where α ∈ (0, 1) is a real number satisfying

sup
y∈[−| y0

2
|,| y0

2
|]

∣∣∣ψ(y − t) + ψ(y + t)
2

− ψ(y)
∣∣∣ ≤ δ

α
.

Now, in the case y0 6= 0 this construction yields EQ = 0 and

CL,Q(t)− CL,Q(0) =
∫

R

ψ(y − t) + ψ(y + t)
2

− ψ(y)dQ(y)

= α

∫
[−| y0

2
|,| y0

2
|]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dµ[−| y0
2
|,| y0

2
|](y)

+(1− α)
∫

[y0,y0+ε0]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dµ[y0,y0+ε0](y)

≤ δ + (1− α)
∫

[0,ε0]

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε

)
dµ[0,ε0](ε)

≤ δ0 + δ .

Furthermore, the case y0 = 0 can be shown analogously, and the last assertion follows if we repeat
the above construction with α = 0.

With the above preparations we can finally establish our first main result that characterizes loss
functions L that are Lmean-calibrated with respect to Q∗sym(L):
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Theorem 4.18 Let L be a symmetric, continuous loss function. Then the following statements
are equivalent:

i) L is Lmean-calibrated with respect to Q∗sym(L).

ii) L is convex and its associated function ψ has its only minimum at 0.

Proof: ii) ⇒ i). Assume that L is not Lmean-calibrated with respect to Q∗sym(L). By Lemma 4.16
there then exist a Q ∈ Q∗sym(L) and a t 6= 0 with CL,Q(m+ t) = C∗L,Q, where m := EQ. Using
CL,Q(m) = C∗L,Q, which we know from Lemma 4.15, then yields∫

R

ψ(y − t) + ψ(y + t)
2

− ψ(y) dQ(m)(y) = CL,Q(m+ t)− CL,Q(m) = 0 ,

and hence the convexity of ψ shows ψ(y−m−t)+ψ(y−m+t)
2 − ψ(y −m) = 0 for Q-almost all y ∈ R.

The continuity of ψ and the assumption Q
(
m + (−ρ, ρ)

)
> 0 for all ρ > 0, then guarantee that

ψ(y−m−t)+ψ(y−m+t)
2 − ψ(y −m) = 0 holds for y := m. However, by the symmetry of ψ this implies

ψ(t) = ψ(0) which violates our assumption on ψ.
i) ⇒ ii). Assume that ψ is not convex. Then Lemma A.1 shows that there exist s1, s2 ∈ R with
ψ(s1)+ψ(s2)

2 −ψ( s1+s2
2 ) < 0. With the continuity of ψ we then find (44) for some suitable δ0 < 0 and

ε0 > 0, and consequently Lemma 4.17 gives a Q ∈ Q∗[−M,M ],sym(L) and a t 6= 0 with EQ = 0 and
CL,Q(t) < CL,Q(0). Now observe that since ψ is continuous and Q has bounded support, the map
t 7→ CL,Q(t) is continuous on R. Let (tn) ⊂ R be a sequence with CL,Q(tn) → C∗L,Q for n→∞. Now,
our previous considerations showed CL,Q(0) 6= C∗L,Q and hence (tn) is eventually bounded away from
0, i.e. there exist an ε > 0 and an n0 ∈ N such that |tn| ≥ ε for all n ≥ n0. This gives

δmax(ε,Q) = inf
t′ 6∈(−ε,ε)

CL,Q(t)− C∗L,Q ≤ CL,Q(tn)− C∗L,Q ,

for all n ≥ n0. For n → ∞ we hence find δmax(ε,Q) = 0, and consequently L is convex. Finally,
assume that there exists a t 6= 0 with ψ(t) = ψ(0). Then we find CL,Q(t) = C∗L,Q for the distribution
Q defined by Q({0}) = 1, and hence we obtain δmax(t, Q) = 0 by Lemma 4.16.

The following theorem considers calibration with respect to the larger class Qsym:

Theorem 4.19 Let L be a symmetric, continuous loss function. Then the following statements
are equivalent:

i) L is Lmean-calibrated with respect to Qsym(L).

ii) L is strictly convex.

Proof: If L is strictly convex then Lemma 4.15 and Lemma 4.16 show that L is Lmean-calibrated
with respect to Qsym(L). Conversely, if L is Lmean-calibrated with respect to Qsym(L), then Theo-
rem 4.18 shows that L is convex. Let us suppose that its associated ψ : R → [0,∞) is not strictly
convex. Then there exists r1, r2 ∈ R with r1 6= r2 and

ψ
(1

2
r1 +

1
2
r2

)
=

1
2
ψ(r1) +

1
2
ψ(r2) .

From this and Lemma A.1 we easily find (44) for δ0 = 0 and some suitable s1 6= s2 and ε0 > 0.
Lemma 4.17 then gives a t0 6= 0 and a Q ∈ Q[−M,M ],sym(L) with CL,Q(EQ+ t0) = C∗L,Q and hence
Lemma 4.16 shows that L is not Lmean-calibrated with respect to Qsym(L).
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Our next aim is to estimate the function ε 7→ δmax(ε,Q) for some classes Q ⊂ Qsym. To this end
we define the modulus of convexity of a function f : I → R, where I is an interval, by

δf (ε) := inf
{
f(x1) + f(x2)

2
− f

(x1 + x2

2

)
: x1, x2 ∈ I with |x1 − x2| ≥ ε

}
, ε > 0.

In addition we say that f is uniformly convex if δf (ε) > 0 for all ε > 0. Some properties of the
modulus of convexity and uniformly convex functions can be found in Appendix.

With the help of the modulus of convexity we can now formulate the following theorem that
estimates δmax(ε,Q) and characterizes uniform calibration:

Theorem 4.20 Let L be a symmetric, convex loss function with associated ψ. Then we have:

i) For all M > 0, ε > 0, and all Q with Q∗[−M,M ],sym ⊂ Q ⊂ Q[−M,M ],sym we have

δψ|[−(2M+ε),2M+ε]
(2ε) ≤ δmax(ε,Q) ≤ δψ|[−M/2,M/2]

(2ε) . (45)

Consequently, the following statements are equivalent:

(a) L is uniformly Lmean-calibrated with respect to Q∗[−M,M ],sym for all M > 0.

(b) L is uniformly Lmean-calibrated with respect to Q[−M,M ],sym for all M > 0.

(c) The function ψ is strictly convex.

ii) For all ε > 0 we have

δψ(2ε) = δmax(ε,Qsym(L)) = δmax(ε,Q∗bounded,sym(L)) . (46)

Consequently, the following statements are equivalent:

(a) L is uniformly Lmean-calibrated with respect to Qsym(L).

(b) L is uniformly Lmean-calibrated with respect to Q∗bounded,sym(L).

(c) The function ψ is uniformly convex.

Proof: i). For Q ∈ Q[−M,M ],sym we have EQ ∈ [−M,M ], and hence we find

δmax(ε,Q) =
∫

[−M,M ]

ψ
(
y − EQ− ε

)
+ ψ

(
y − EQ+ ε

)
2

− ψ(y − EQ) dQ(y) ≥ δψ|[−(2M+ε),2M+ε]
(2ε)

by Lemma 4.15 and Lemma 4.16. This shows the first inequality. To prove the second inequality
let n ≥ 1. Then there exist s1, s2 ∈ [−M/2,M/2] with s1 − s2 ≥ 2ε and

ψ(s1) + ψ(s2)
2

− ψ

(
s1 + s2

2

)
< δψ|[−M/2,M/2]

(2ε) +
1
n

=: δ0 .

By the continuity of ψ there thus exists an ε0 ∈ (0,M ] such that (44) is satisfied for δ0, and
consequently Lemma 4.17 gives a Q ∈ Q∗[−M,M ],sym with EQ = 0 and with

CL,Q(t)− C∗L,Q ≤ δψ|[−M/2,M/2]
(2ε) +

2
n

for t := s1−s2
2 . Since t ≥ ε we also have δmax(ε,Q) ≤ CL,Q(t)− C∗L,Q, and hence we find

δmax(ε,Q∗[−M,M ],sym) ≤ δmax(ε,Q) ≤ δψ|[−M/2,M/2]
(2ε) +

2
n
.
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Loss function ψ(t) lower bound of δψ|[−B,B]
upper bound of δψ|[−B,B]

L1-loss |t| 0 0

Lp-loss, p ∈ (1, 2) |t|p p(p−1)
8 Bp−2ε2

p
8(p−1)2

Bp−2ε2

Lp-loss, p ∈ [2,∞) |t|p
(
ε
2

)p (
ε
2

)p
Logistic loss − ln 4et

(1+et)2
eε/2−1
2eε/2 ln eB+eε

eB+eε/2
eε/2−1
eε/2 ln eB+eε

eB+eε/2

Huber’s loss, c>0
t2

2 if |t|≤c
c|t|− c2

2 else

ε2

8 if B ≤ c
0 else

ε2

8 if B ≤ c
0 else

Table 3: Some invariant loss functions and corresponding upper and lower bounds of δψ|[−B,B](ε), 0 < ε ≤ B,
for the restriction ψ|[−B,B] of ψ to [−B,B], for B > 0. The asymptotic behaviour for the Lp-loss, 1 < p < 2,
is computed in Example A.4. For the Lp-loss, p ≥ 2, and Huber’s loss the lower bounds can be found by
Clarkson’s inequality, and the upper bounds were found by finding suitable x1, x2 ∈ [B,B]. The calculations
for the logistic loss can be found in Example A.5.

Since this holds for all n ≥ 1 the second inequality follows. Finally, Lemma A.1 shows that ψ is
strictly convex if and only if δψ|[−B,B]

(ε) > 0 for all B, ε > 0, and hence the characterization follows.
ii). Analogously to the proof of the first inequality in (45) we find δψ(2ε) ≤ δmax(ε,Qsym(L)) for all
ε > 0. Furthermore by the second inequality in (45) we obtain δmax(ε,Q∗bounded,sym(L)) ≤ δψ(2ε)
for all ε > 0, and hence (46) is proved. Finally, the characterization is a consequence of (46).

Remark 4.21 The above theorem shows that the modulus of convexity completely determines whether a
loss function is uniformly Lmean-calibrated with respect Qsym(L) or Q∗bounded,sym(L). Unfortunately, Lemma
A.3 shows that for all distance-based loss functions of growth type p < 2 we have δψ(ε) = 0 for all ε > 0.
In particular, Lipschitz continuous, distance-based losses which are of special interest for robust regression
methods (see e.g. [8]) are not uniformly calibrated with respect to Qsym(L) or Q∗bounded,sym(L), and con-
sequently we cannot establish strong relations between the excess L-risks and RLmean,P (.) in the sense of
Question 2.

On the other hand, note that symmetric, strictly convex losses L are Lmean-calibrated with respect to
Qsym(L), and hence we can show analogously to Theorem 3.16 that fn → E(Y |.) in probability, whenever
RL,P (fn) → R∗

L,P and P is of type Qsym(L). In addition, if we restrict our considerations to Q[−M,M ],sym or
Q∗[−M,M ],sym then every strictly convex loss becomes uniformly Lmean-calibrated, and in this case δψ|[−B,B](.),
B > 0, can be used to describe the corresponding calibration function. For some important losses we have
listed the behaviour of δψ|[−B,B](.) in Table 3. Furthermore, Lemma A.3 establishes a formula for the modulus
of convexity which often helps to bound the modulus.

In Theorem 4.18 we have seen that for Q ∈ Q∗sym(L) we may have δmax(ε,Q) > 0, ε > 0, even if
L is not strictly convex. The key reason for this possibility was the assumption that Q has some
mass around its center. Now recall that in the proof of the upper bounds of Theorem 4.20 we used
the fact that for general Q ∈ Q∗sym this mass can be arbitrarily small. However, if we enforce lower
bounds on this mass the construction of this proof no longer works. Instead, it turns out that we
can establish lower bounds on δmax(ε,Q) as the following example illustrates:

Example 4.22 Let L be the distance-based loss function whose associated ψ is ψ(t) = |t|, t ∈ R. Then for
all Q ∈ Qsym(L), m := EQ, and all ε > 0 we have

δmax(ε,Q) =
∫ ε

0

Q(m)
(
(−s, s)

)
ds .
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To see this we first observe that for t ≥ 0 and y ∈ R an easy calculation shows

ψ(y − t)− ψ(y) =


t if y ≤ 0
t− 2y if y ∈ (0, t)
−t if y ≥ t .

Consequently the symmetry of Q(m) yields

CL,Q(m+ t)− C∗L,Q = tQ(m)
(
(−∞, 0]

)
+ tQ(m)

(
(0, t)

)
− 2

∫
0<y<t

ydQ(m)(y)− tQ(m)
(
[t,∞)

)
= tQ(m)

(
(−t, t)

)
− 2

∫
0≤y<t

ydQ(m)(y)

=
∫ t

0

Q(m)
(
(−t, t)

)
−Q(m)

(
(−t,−s] ∪ [s, t)

)
ds

=
∫ t

0

Q(m)
(
(−s, s)

)
ds .

From this we easily find the assertion by Lemma 4.16.

Remark 4.23 The above results show that using distance-based loss functions for regression problems
requires some care: for example let us suppose that the primary goal of the regression problem is to find the
regression function. If we only know that the noise distributions have finite variances (and expect that these
distributions are rather asymmetric) then the least squares loss is the only reasonable distance-based choice
by Proposition 4.14. However, if we know that the noise is (almost) symmetric then e.g. symmetric, strictly
convex and Lipschitz continuous losses like the logistic loss can be a reasonable alternative. In addition, if we
are confident that the noise is rather concentrated around its mean, e.g. in the form of Q(m)((−s, s)) > cQs

q

for small s > 0, then even convex loss functions like the absolute distance loss considered in the previous
example can be a good choice. Finally, if we additionally expect that the data set contains extreme outliers
then the logistic loss or the absolute distance loss may actually be the better choice than the least squares
loss. However, recall that such a decision only makes sense under an (almost) symmetric behaviour of the
noise distribution.

When we introduced the template loss Lmean we also discussed its relation to self-calibration
issues. Therefore let us finally investigate in which sense convex, distance-based loss functions are
self-calibrated.

Theorem 4.24 Let L be a distance-based, convex loss function whose associated ψ satisfies
limt→±∞ ψ(t) = ∞. Then we have:

i) L is self-calibrated with respect to Qbounded.

ii) If L is of some growth type p ≥ 1 then L is self-calibrated with respect to QR(L).

iii) If L is strictly convex then L is uniformly self-calibrated with respect to Q[−M,M ] for all M > 0,
and we have

δmax,L̆,L(ε,Q[−M,M ]) ≥ 2δψ|[−(2M+ε),2M+ε]
(ε) , ε > 0, M > 0. (47)

iv) If L is uniformly convex then L is uniformly self-calibrated with respect to Qbounded and we
have

δmax,L̆,L(ε,Qbounded) ≥ 2δψ(ε) , ε > 0. (48)
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v) If L is uniformly convex and of some growth type p ≥ 2 then L is uniformly self-calibrated
with respect to QR(L) and we have

δmax,L̆,L(ε,QR(L)) ≥ 2δψ(ε) , ε > 0. (49)

Proof: i). Proposition 4.13 shows Qbounded ⊂ Qmin(L), and hence Lemma 3.15 implies i).
ii). The results in [8] together with Proposition 4.13 show QR(L) ⊂ Qmin(L). Again, the assertion
then follows from Lemma 3.15.
iii). Let us fix a Q ∈ Q[−M,M ]. By Proposition 4.13 we then know that there exists a t∗Q ∈ R with
ML,Q(0+) = {t∗Q}, and consequently (10) reduces to

δmax,L̆,L(ε,Q) = min
{
CL,Q(t∗Q − ε)− C∗L,Q, CL,Q(t∗Q + ε)− C∗L,Q

}
. (50)

Let us now assume that t∗Q > M . Then we have y− t∗Q ≤ y−M ≤ 0 for all y ∈ [−M,M ]. Since ψ is
convex and has a minimum at 0 it is decreasing on (−∞, 0] and hence we find ψ(y−M) ≤ ψ(y−t∗Q)
for all y ∈ [−M,M ]. This directly implies CL,Q(M) ≤ CL,Q(t∗Q), and hence our assumption t∗Q > M
cannot be true. Since we can analogously show t∗Q ≥ −M , we have t∗Q ∈ [−M,M ]. Moreover, for
t ∈ [−M − ε,M + ε] we have

CL,Q(t) + C∗L,Q
2

=
∫

[−M,M ]

ψ(y − t) + ψ(y − t∗Q)
2

dQ(y)

≥
∫

[−M,M ]
ψ

(
y −

t+ t∗Q
2

)
+ δψ|[−(2M+ε),2M+ε]

(
|t− t∗Q|

)
dQ(y)

= CL,Q
( t+ t∗Q

2

)
+ δψ|[−(2M+ε),2M+ε]

(
|t− t∗Q|

)
≥ C∗L,Q + δψ|[−(2M+ε),2M+ε]

(
|t− t∗Q|

)
, (51)

and thus we find (47) by combining (50) with (51) and t∗Q ∈ [−M,M ].
iv). Inequality (47) immediately implies (48).
v). The proof of Inequality (49) is analogous to the proof of (47).

Remark 4.25 The above theorem shows that for convex, distance-based losses L, approximate L-risk mini-
mizers approximate the Bayes decision functions in the sense of Theorem 3.16, i.e. in probability. In particular
note that the absolute distance loss can be used to estimate the median (multi)-function in this weak sense.
Moreover, Example 4.22 together with Theorem 2.17 shows that in order to estimate the median function
in a stronger sense one needs assumptions on the concentration of the noise distributions. The reason for
this observation is the fact that for symmetric, convex losses L whose associated ψ have a unique minimum
at 0 the stronger convexity assumptions in iii)-v) are also necessary for uniform self-calibration. To see the
latter observe that for such L Theorem 4.18 shows the Lmean-calibration with respect to Q∗sym(L), and from
Lemma 4.16 we may thus conclude that CL,Q(.) has a unique minimum at EQ for all Q ∈ Q∗sym(L). Equation
(41) then shows

δmax,Lmean,L(ε,Q) = δmax,L̆,L(ε,Q) , ε ∈ [0,∞] , Q ∈ Q∗sym(L). (52)

Now assume e.g. that L is uniformly self-calibrated with respect to Q[−M,M ] for all M > 0. Then it is also
uniformly self-calibrated with respect to Q∗[−M,M ],sym, and thus (52) shows that L is Lmean-calibrated with
respect to Q∗[−M,M ],sym. By Theorem 4.20 we then see that L is strictly convex.

Remark 4.26 Inequalities for excess risks resulting from Theorem 4.24 can be used to establish variance
bounds which are important for bounding the estimation error by Talagrand’s inequality. Indeed, if e.g. L
is a strictly convex loss function then its corresponding ψ is locally Lipschitz continuous and hence (32) can
be used to find an “inner” version of a variance bound. This approach was somewhat implicitly taken in
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e.g. [1, 4] in order to derive variance bounds for margin-based losses, but of course it also works for distance-
based losses. However, it sometimes provides too loose bounds as e.g. the hinge loss shows. Indeed, this loss
fails to be uniformly self-calibrated not only for η → 1/2 but also for η → 0 and η → 1. In order to establish
variance bounds using the self-calibration we consequently need not only to ensure a noise assumption in
the sense of Tsybakov, but also a similar assumption ensuring that the set where η is either close to 0 or 1 is
small. However, the assumption for η close to 0 and 1 is superfluous as the variance bound established in [29,
Lemma 6.1] shows. One may ask whether variance bounds can also be directly established using our general
framework and a (template) loss which reflects the variance bounds one is interested in. Some preliminary
considerations we have already made in this directions are promising but due to space constraints we do not
go into further details.

4.4 Density Level Detection

In this subsection we show how the developed theory can be used to investigate the density level
detection problem. To this end let us first recall that in this unsupervised learning problem we have
a known probability measure µ on X and the goal is to estimate a level set {g > ρ} or {g ≥ ρ}
of an unknown function g : X → [0,∞) satisfying ‖g‖L1(µ) = 1. The only information to achieve
this goal is given to us by a data set T := (x1, . . . , xn) of n samples drawn independently from
the probability measure gµ. Typically, an estimate of a level set is of the form {f > 0}, where
f : X → R is a measurable function. In order to assess the quality of such an estimate one can use
the loss function LDLD : X × R → [0,∞] defined by

LDLD(x, t) := 1(−∞,0)

(
(g(x)− ρ) sign t

)
, x ∈ X, t ∈ R . (53)

Note that this loss function penalizes predictions t if either t ≥ 0 and g(x) < ρ, or t < 0 and
g(x) > ρ, whereas it completely ignores t if g(x) = ρ. In a slight abuse of notations we now write

RLDLD,µ(f) :=
∫
X
LDLD

(
x, f(x)

)
dµ(x) ,

where f : X → R is a measurable function. Obviously, this definition gives RLDLD,µ(f) =
RLDLD,P (f) for every Polish space Y and every distribution P on X × Y with PX = µ. More-
over note, that if we additionally assume µ({g = ρ}) = 0, as it is usually done in the literature4,
we obtain the better known expression

RLDLD,µ(f) = µ
(
{g ≥ ρ}4{f ≥ 0}

)
.

Now note that unlike for the supervised loss functions we cannot compute LDLD(x, t), since g is
unknown to us, and consequently for training sets of the form T = (x1, . . . , xn) ∈ Xn we cannot use
e.g. an ERM based on LDLD simply because we cannot compute the empirical risk. To overcome
this problem a framework was developed in [28] that translates the density level detection problem
to a binary classification problem. The key idea of this framework was the following definition:

Definition 4.27 Let µ be a distribution on X and Y := {−1, 1}. Furthermore, let g : X → [0,∞]
be a measurable function with ‖g‖L1(µ) = 1. For ρ > 0 we define the distribution P := gµ	ρ µ by

PX :=
g + ρ

1 + ρ
µ ,

P (y = 1|x) :=
g(x)

g(x) + ρ
, x ∈ X.

4We could have gone this path, too. However, we will see that technically it is a bit more convenient to ignore
the set {g = ρ} rather than to assume that it (essentially) does not exist.
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Note that the distribution P := gµ	ρµ describes a binary classification problem and consequently
one could ask in which way the classification risk RLclass,P (.) is related to RLDLD,µ(.). It turned
out in [28] that there is indeed a close relationship in between the two quantities. The goal in this
subsection is to extend the considerations of [28] using our general theory. To this end we write
Y := {−1, 1} throughout this section. Furthermore, we always identify a distribution Q ∈ QY by
η ∈ [0, 1] via the relationship η := Q({1}). Now let us define L̄DLD : [0, 1]× R → [0,∞] by

L̄DLD(η, t) := (1− η)1(−∞,0)

(
(2η − 1) sign t

)
. (54)

Using the identification η = Q({1}) we can then think of L̄DLD as a template loss. Furthermore,
for P = gµ	ρ µ the P -instance L̄DLD,P of L̄DLD is

L̄DLD,P (x, t) = (1− η(x))1(−∞,0)

(
(2η(x)− 1) sign t

)
=

ρ

g(x) + ρ
1(−∞,0)

(
(g(x)− ρ) sign t

)
,

where η(x) := P (y = 1|x) = g(x)
g(x)+ρ . With this equation we then find

RLDLD,µ(f) =
∫
X
LDLD

(
x, f(x)

) 1 + ρ

g(x) + ρ
dPX(x) =

1 + ρ

ρ
RL̄DLD,P ,P

(f) (55)

for all measurable f : X → R. Consequently, suitable supervised surrogates for the DLD-problem
are exactly the losses that are (uniformly) L̄DLD-calibrated. In order to identify the latter losses
let us first compute the corresponding calibration functions:

Lemma 4.28 Let L : Y × R → [0,∞] be a supervised loss function. Then for all η ∈ [0, 1] and
ε ∈ (0,∞] we have

δmax,L̄DLD,L
(ε, η) =

{
∞ if ε > 1− η

inft∈R:(2η−1) sign t<0 CL,η(t)− C∗L,η if ε ≤ 1− η.

Proof: A simple calculation shows C∗
L̄DLD,η

= 0, and consequently we obtain ML̄DLD,η
(ε) = R if

ε > 1− η, and ML̄DLD,η
(ε) = {t ∈ R : (2η − 1) sign t ≥ 0} otherwise.

With the help of the above lemma we now obtain the first main result which compares classifi-
cation calibration with L̄DLD-calibration:

Theorem 4.29 Let L : Y × R → [0,∞] be a supervised loss function, η ∈ [0, 1], and 0 ≤ ε ≤
min{1− η, |2η − 1|}. Then we have

δmax,L̄DLD,L
(ε, η) ≥ δmax,Lclass,L(ε, η) ,

and consequently, L is L̄DLD-calibrated if L is classification calibrated. Moreover, if L is continuous
then the above inequality becomes an equality and L is classification calibrated if and only if L is
L̄DLD-calibrated.

Proof: Combining Lemma 4.1 with Lemma 4.28 yields

δmax,L̄DLD,L
(ε, η) = inf

t∈R:
(2η−1) sign t<0

CL,η(t)− C∗L,η ≥ inf
t∈R:

(2η−1) sign t≤0

CL,η(t)− C∗L,η = δmax,Lclass,L(ε, η) .

Moreover, for continuous L the assertion can be found using the continuity of t 7→ CL,η(t).
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By the results on classification calibrated, margin-based loss functions in [1] we immediately
obtain a variety of L̄DLD-calibrated losses. Furthermore, the P -instances of L̄DLD are bounded loss
functions and therefore Theorem 2.8 yields

RL,P (fn) → R∗L,P =⇒ RLDLD,µ(fn) → 0

whenever P = gµ 	ρ µ and L is classification calibrated. In addition, for L := Lclass the proof of
[28, Thm. 4] shows that the converse implication is also true.

Our next goal is to identify the uniformly L̄DLD-calibrated losses. The following theorem gives a
complete, though rather disappointing solution:

Theorem 4.30 (No uniform DLD calibration) There exists no supervised loss function L :
Y ×R → [0,∞] that is uniformly L̄DLD-calibrated with respect to both {Q ∈ QY : Q({1}) ∈ [0, 1/2)}
and {Q ∈ QY : Q({1}) ∈ (1/2, 3/4]}.

Proof: Let L : Y × R → [0,∞] be a supervised loss function. For η ∈ [0, 1] we define

h+(η) = inf
t<0

CL,η(t)

h−(η) = inf
t≥0

CL,η(t)

Then the functions h+ : [0, 1] → [0,∞) and h− : [0, 1] → [0,∞) can be defined by suprema taken
over affine linear functions in η ∈ R, and since h+ and h− are also finite for η ∈ [0, 1], we see that
h+ and h− are continuous at every η ∈ [0, 1]. Moreover, we have C∗L,η = min{h+(η), h−(η)} for all
η ∈ [0, 1], and hence C∗L,η is continuous in η. Let us first consider the case C∗L,1/2,x = h+(1/2). To
this end we first observe that there exists a sequence (tn) ⊂ (−∞, 0) with

h+
(
1/2 + 1/n

)
≤ CL,1/2+1/n,x(tn) ≤ h+

(
1/2 + 1/n

)
+ 1/n (56)

for all n ≥ 1. Moreover, our assumption C∗L,1/2,x = h+(1/2) yields∣∣CL,1/2+1/n,x(tn)− C∗L,1/2+1/n,x

∣∣
≤

∣∣CL,1/2+1/n,x(tn)− h+(1/2 + 1/n)
∣∣ +

∣∣h+
(
1/2 + 1/n

)
− h+(1/2)

∣∣ +
∣∣C∗L,1/2,x − C∗L,1/2+1/n,x

∣∣
for all n ≥ 1. By (56) and the continuity of h+ and η 7→ C∗L,η we hence find

lim
n→∞

∣∣CL,1/2+1/n,x(tn)− C∗L,1/2+1/n,x

∣∣ = 0 .

For Q :=
{
Q ∈ QY : Q({1}) ∈ (1/2, 3/4]

}
Lemma 4.28, the definition h+, and (56) then yield

δmax,L̄DLD,L
(ε,Q) = inf

η∈( 1
2
, 3
4
]
h+(η)− C∗L,η ≤ inf

n≥1
CL,1/2+1/n,x(tn)− C∗L,1/2+1/n,x = 0 .

Consequently, L is not uniformly L̄DLD-calibrated with respect to Q. Finally, in the case C∗L,1/2,x =
h−(1/2) we can analogously show that L is not uniformly L̄DLD-calibrated with respect to {Q ∈
QY : Q({1}) ∈ [0, 1/2)}.

Obviously the above theorem shows that there exists no uniformly L̄DLD-calibrated, supervised
loss function. Now recall that Theorem 2.17 showed that uniform calibration is necessary to estab-
lish inequalities between excess risks if essentially no assumptions on the data-generating distribu-
tion are imposed.5 Together with Theorem 4.30 we consequently see that it is impossible to find

5Formally the result only holds for loss functions, not template losses However, it is quite straightforward to see
that the proof of Theorem 2.17 can be easily modified to establish an analogous result for instances of template losses.
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a supervised loss L : Y × R → [0,∞] and an increasing function δ : [0,∞] → [0,∞] with δ(0) = 0
and δ(ε) > 0, ε > 0, such that

δ
(
RLDLD,µ(f)

)
≤ RL,P (f)−R∗L,P (57)

holds for all µ, g, ρ, f , and P := gµ 	ρ µ. However, in the DLD learning scenario we actually
know µ and ρ and hence the question remains whether for certain fixed µ and ρ there exists a
non-trivial function δ satisfying (57). In order to answer this question (negatively) we need the
following elementary lemma:

Lemma 4.31 Let η ∈ [0, 1) and ρ > 0. Furthermore, let X be a measurable space and µ be a
distribution on X such that there exists measurable A ⊂ X with 0 < µ(A) < min{1, 1−η

ηρ }. Then
g : X → [0,∞) defined by

g(x) :=
ηρ

1− η
1A(x) +

1− η − ηρµ(A)
(1− η)(1− µ(A))

1X\A(x) (58)

is a density, i.e. ‖g‖L1(µ) = 1.

Proof: Since µ(A) ≤ 1−η
ηρ we have 1− η− ηρµ(A) ≥ 0 and hence we actually have g(x) ≥ 0 for all

x ∈ X. Moreover, an easy calculation shows∫
X
g dµ =

ηρ

1− η
µ(A) +

1− η − ηρµ(A)
(1− η)(1− µ(A))

µ(X \A) = 1 .

With the help of the above lemma we can now show that there exists no non-trivial function δ
satisfying (57) even if we fix µ and ρ:

Theorem 4.32 (No general DLD calibration inequality) Let X be a measurable space and
µ be a distribution on X such that for all r ∈ [0, 1] there exists a measurable A ⊂ X with µ(A) = r.
Furthermore let ρ > 0, Y := {−1, 1}, and L : Y × R → [0,∞) be a supervised loss function. Then
there exists no increasing function δ : [0,∞] → [0,∞] with δ(0) = 0 and δ(ε) > 0 for ε > 0 such
that for all measurable g : X → [0,∞) with ‖g‖L1(µ) = 1 and all measurable f : X → R we have

δ
(
RLDLD,µ(f)

)
≤ RL,P (f)−R∗

L,P ,

where P := gµ	ρ µ and LDLD(x, t) := 1(−∞,0)

(
(g(x)− ρ) sign t

)
for x ∈ X and t ∈ R.

Proof: Theorem 4.30 shows that L is not uniformly L̄DLD-calibrated with respect to both {Q ∈
QY : Q({1}) ∈ [0, 1/2)} and {Q ∈ QY : Q({1}) ∈ (1/2, 3/4]}. For brevity’s sake we only consider
the case where L is not uniformly L̄DLD-calibrated with respect to {Q ∈ QY : Q({1}) ∈ [0, 1/2)}.
Let us now assume that there exists a function δ in the sense of the theorem. We define δ̃(ε) :=
δ(1+ρ

ρ ε), ε ≥ 0. By (55) we then have

δ̃
(
RL̄DLD,P ,P

(f)
)
≤ RL,P (f)−R∗L,P (59)

for all measurable f : X → R and all P in the above sense. Let us fix an η ∈ [0, 1). By Lemma
4.31 there then exists a density g : X → [0,∞) with

µ
({
x ∈ X : η =

g(x)
g(x) + ρ

})
> 0 . (60)
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We define P := gµ	ρ µ. Then (59) together with Theorem 3.3 and PX = g+ρ
1+ρµ shows

µ
({
x ∈ X : δmax,L̄DLD,P ,L

(ε, P (.|x), x) = 0
})

= 0 , ε > 0.

Now recall that the calibration function for a P -instance of a template loss can be calculated by
(28). In our case this formula yields

δmax,L̄DLD,P ,L
(ε, P (.|x), x) = δmax,L̄DLD,L

(ε, P (.|x)) , ε > 0, x ∈ X.

Identifying P (.|x) with P (y = 1|x) = g(x)
g(x)+ρ and using (60) we then obtain δmax,L̄DLD,L

(ε, η) > 0
for all ε > 0. Since Lemma 4.28 shows that the latter also holds for η = 1 we have shown that L is
L̄DLD-calibrated.
Let us now fix a measurable subset A ⊂ X with µ(A) = 1

2 min{1, 1
ρ}. Furthermore, for a fixed

η ∈ [0, 1/2) we have µ(A) < 1
ρ ≤

1−η
ηρ and hence g defined by (58) is a density. Again we write

P := gµ	ρ µ, and in addition we fix an ε > 0 with ε ≤ 1− η. Since L is DLD calibrated there then
exists a δ̂ ∈ (0, ε) such that

CL,η̂,x(s) < C∗L,η̂,x + δ̂ =⇒ CL̄DLD,η̂,x
(s) < ε ,

where η̂ := P (y = 1|x) = g(x)
g(x)+ρ for some x ∈ X \ A. In addition, L(y, t) < ∞ implies C∗L,η̂,x < ∞

and hence there exists an s ∈ R with CL,η̂,x(s) < C∗L,η̂,x+ δ̂. Moreover, since ε ≤ 1− η the definition
of L̄DLD shows that this s actually satisfies CL̄DLD,η̂,x

(s) = 0. For arbitrary t ∈ R we now define

f := t1A + s1X\A .

Since P (y = 1|x) = g(x)
g(x)+ρ = η for x ∈ A our construction then yields

RL,P (f)−R∗
L,P ≤ µ(A)

(
CL,η(t)− C∗L,η

)
+

(
1− µ(A)

)
δ̂ ≤ CL,η(t)− C∗L,η + ε

and
RL̄DLD,P ,P

(f) = µ(A) CL̄DLD,η
(t) = cρ (CL̄DLD,η

(t)− C∗L̄DLD,η
) ,

where cρ := 1
2 min{1, 1

ρ}. Combining these estimates with (59) we find

δ̃
(
cρ (CL̄DLD,η

(t)− C∗L̄DLD,η
)
)
≤ CL,η(t)− C∗L,η + ε

for all η ∈ [0, 1/2), ε > 0, and t ∈ R. From the latter and Lemma 2.9 it is easy to conclude that L
uniformly L̄DLD-calibrated with respect to {Q ∈ QY : Q({1}) ∈ [0, 1/2)}. However, this contradicts
our initial assumption.

Recall that the key idea of the proof of Theorem 4.30 was to choose η arbitrarily close to 1/2. By
finding densities g that are close to the critical level ρ on a sufficiently large set this idea was then
used to prove Theorem 4.32. On the other hand if we only consider densities g that are bounded
away from the level ρ then the corresponding η(x) = g(x)

g(x)+ρ , x ∈ X, is bounded away from the
critical level 1/2, and thus the arguments of Theorem 4.30 and Theorem 4.32 do not work. This
observation has been implicitly used for the inequalities established in [28, Thm. 10]. Moreover,
using Theorem 3.9 we can actually improve these inequalities slightly. Due to space constraints we
only mention the result and omit the proof:
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Theorem 4.33 (DLD calibration inequalities for certain densities) Let µ be a distribution
on X, g : X → [0,∞] be a measurable function with ‖g‖L1(µ) = 1, and ρ > 0. Then for P := gµ	ρµ
the following statements hold:

i) If there exist constants c > 0 and β ∈ (0,∞] with

µ
(
{x ∈ X : 0 < |g − ρ| < s}

)
≤ (c s)β (61)

for all s > 0 then for all measurable f : X → R we have

RLDLD,µ(f) ≤ 2
(
(1 + ρ)c

) β
1+β

(
RLclass,P (f)−R∗Lclass,P

) β
1+β .

ii) If there exist constants c > 0 and p ∈ (1,∞] with

µ
(
{x ∈ X : |g − ρ| ≥ s−1}

)
≤ (c s)p (62)

for all s > 0 then for all measurable f : X → R we have

RLclass,P (f)−R∗
Lclass,P

≤ 2
( p

p− 1

) 1
p c

1 + ρ

(
RLDLD,µ(f)

) p−1
p .

Note that Condition (62) is equivalent to saying |g − ρ| ∈ Lp,∞(µ) with ‖g − ρ‖p,∞ ≤ c. Conse-
quently, if we actually have g ∈ Lp(µ) then (62) is satisfied for c = ‖g‖p + ρ. Moreover, the latter
condition is almost sharp since |g − ρ| ∈ Lp,∞(µ) conversely implies g ∈ Lp−ε(µ) for all sufficiently
small ε > 0.

4.5 Density Estimation

In this last subsection we apply the developed theory to the density estimation problem. To this end
let us first recall that in this unsupervised learning problem we have a data-generating distribution
on X which is of the form gµ, where µ is a known distribution and g is an unknown density. The
learning goal is then to estimate g. Let us assume that we have an estimate f of this density. Then
the quality of this estimate is usually measured by

RLg ,µ(f) :=
∫
X

∣∣f(x)− g(x)
∣∣dµ(x) = ‖f − g‖L1(µ) ,

or if g ∈ Lp(µ) is known, by RL̄g,p,µ(f) := ‖f − g‖Lp(µ). Obviously, the above performance measure
RLg ,µ(.) is a risk with respect to the unsupervised loss function (x, t) 7→ |t − g(x)|. However, like
for the density level detection problem, this loss function is not accessible to us since we do not
know g. Consequently, if we want to assess the quality of an estimate, we need a surrogate risk,
i.e. a surrogate loss function. In order to find such a surrogate recall that a well-known heuristic
for the density estimation problem is based on using additional samples drawn from µ (see e.g. [13,
Chap. 14.2.4]). Let us now briefly describe and analyze this approach. To this we define P := gµ	1µ
on X × Y , Y := {−1, 1}, i.e. P is the joint distribution of the original, positively labeled samples
drawn from gµ, and the artificial, negatively labeled samples drawn from µ. As usual, we identify
the conditional probability P (.|x) with η(x), via the relation P (y = 1|x) = η(x), so that we have

η(x) =
g(x)

1 + g(x)
and g(x) =

η(x)
1− η(x)

.

Moreover, we need the following definition:
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Definition 4.34 Let L : Y × R → [0,∞) be a supervised loss function such that for all η ∈ [0, 1)
the set ML,η(0+) of exact minimizers contains a single element, denoted by m(η). Then L is called
a density estimation loss function if the map m : [0, 1) → M := {m(η) : η ∈ [0, 1)} defined by
η 7→ m(η) is a bijection and M is a Polish space6.

Let us assume that we have a density estimation loss function L with associated map m : [0, 1) →
M . Given a t ∈ M one can then interpret m−1(t) as an estimate of η, and therefore the template
loss

L̃(η, t) := 2(1− η)
∣∣∣ m−1(t)
1−m−1(t)

− η

1− η

∣∣∣
measures the quality of the estimate m−1(t)

1−m−1(t)
for g. Moreover, for measurable f : X →M an easy

calculation shows

RL̃,P (f) =
∫
X

2
(
1− η(x)

)∣∣∣ m−1(f(x))
1−m−1(f(x))

− η(x)
1− η(x)

∣∣∣ dPX(x) =
∫
X

∣∣∣ m−1(f(x))
1−m−1(f(x))

− g(x)
∣∣∣ dµ(x),

i.e. we have RL̃,P (f) = RLg ,µ(
m−1(f)

1−m−1(f)
). Consequently, it suffices to investigates surrogates for the

template loss L̃. Let us begin with a negative result:

Theorem 4.35 There exists no uniformly L̃-calibrated density estimation loss function L.

Proof: Let us fix η ∈ [0, 1) and ε > 0. Then we have 2η+ε
2+ε ∈ [0, 1) and consequently tη := m(2η+ε

2+ε )
is well-defined. In addition, an easy calculation shows L̃(η, tη) = ε and hence we obtain

δmax,L̃,L(ε, η) = inf
t∈M :L̃(η,t)≥ε

CL,η(t)− C∗L,η ≤ CL,η(tη)− C∗L,η .

Moreover, we have

CL,η(tη) = ηL(1, tη) + (1− η)L(−1, tη)

=
2η + ε

2 + ε
L(1, tη) +

(
1− 2η + ε

2 + ε

)
L(−1, tη) +

ε(η − 1)
2 + ε

L(1, tη) +
ε(1− η)
2 + ε

L(−1, tη)

= C∗
L, 2η+ε

2+ε

+
ε

2 + ε
CL,η(tη)−

ε

2 + ε
CL,1(tη) ,

and consequently we obtain

CL,η(tη) =
2 + ε

2
C∗
L, 2η+ε

2+ε

− ε

2
CL,1(tη) ≤ 2 + ε

2
C∗
L, 2η+ε

2+ε

− ε

2
C∗L,1 .

Together with our estimate on the calibration function this yields

δmax,L̃,L(ε, η) ≤ 2 + ε

2
C∗
L, 2η+ε

2+ε

− ε

2
C∗L,1 − C∗L,η .

Now recall that we have already seen in the proof of Theorem 4.30, that η 7→ C∗L,η is continuous on
[0, 1] and hence we find limη→1 δmax,L̃,L(ε, η) = 0. From this we easily infer the assertion.

6This is only a technical assumption which is satisfied for all commonly used surrogates.
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Remark 4.36 At first glance one is tempted to conclude from Theorem 4.35 and Theorem 2.17 that there
cannot exist a general inequality between the risk RLg,µ(

m−1(f)
1−m−1(f) ) and an excess surrogate risk RL,P (f)−

R∗
L,P . However, in the case of density estimation we are actually not interested in all distributions P

on X × Y , but only in distributions of the form gµ 	1 µ with g being a density with respect to µ, and
therefore Theorem 2.17 does not apply directly. Nevertheless, Theorem 4.35 can be used to show that no
density estimation loss function L allow a general inequality between RLg,µ(

m−1(f)
1−m−1(f) ) and its excess risk

RL,P (f) − R∗
L,P . To see let X := {1, 2}, µ be a distribution on X and g : X → [0,∞) be a density with

g(2) = 0. Note that µ is uniquely determined by µ1 := µ({1}), and since g is a density with respect to µ we
have g1 := g(1) = 1/µ1. Using our standard notations this yields η1 := η(1) ≥ 1/2 and η(2) = 0. Now note
that for f : X → R with m−1(f(2)) = 0 = g(2) we have

RL,P (f)−R∗
L,P =

CL,η1(f1)− C∗L,η1
2η1

≤ CL,η1(f1)− C∗L,η1 ,

where f1 := f(1). Moreover, for such f we also have

RLg,µ

( m−1(f)
1−m−1(f)

)
=

1− η1
η1

·
∣∣∣ m−1(f1)
1−m−1(f1)

− η1
1− η1

∣∣∣ =
L̃(η1, f1)

2η1
.

Now assume that we have a function δ : [0,∞] → [0,∞] and an inequality in the sense of Theorem 2.17.
Then this inequality in particular holds for f : X → R with m−1(f(2)) = 0, and hence we find

δ
( L̃(η1, f1)

2

)
≤ δ

( L̃(η1, f1)
2η1

)
= δ

(
RLg,µ

( m−1(f)
1−m−1(f)

))
≤ RL,P (f)−R∗

L,P ≤ CL,η1(f1)− C∗L,η1 .

Since this inequality holds for all η1 ∈ [1/2, 1) and all f1 ∈ R, we easily see that L is uniformly L̃-calibrated
with respect to {η : 1/2 ≤ η < 1}. However, we have seen in (the proof of) Theorem 4.35 that this uniform
calibration is impossible, and consequently no general inequalities are possible in the above sense.

After these disappointing results let us finally present a positive result for convex loss functions:

Theorem 4.37 Let L : Y × R → [0,∞) be density estimation loss function which is convex in its
second argument. Then L is L̃-calibrated.

Proof: Repeating the proof of [26, Lem. 20] we see that the map m : [0, 1) →M is monotone, and
since it is also invertible, it must be strictly monotone. Moreover, we obviously have ML,Q,x(0+) ⊂
ML̃,Q,x(0

+). Using Lemma 2.11 and the ideas of its proof we then obtain the assertion.

Remark 4.38 Let L : Y × R → [0,∞) be density estimation loss function that is L̃-calibrated. Repeating
the proof of Theorem 3.16 we then see that

m−1(fn)
1−m−1(fn)

→ g in probability

whenever fn : X → M is a sequence of measurable functions with RL,P (fn) → R∗
L,P . In particular, every

universally L-risk consistent method is also universally consistent in the above weak form of the density
estimation problem. Moreover, if g is a bounded density, then it is not hard to derive consistency with
respect to RLg,µ(.). Finally, we like to mention that additional results can be obtained by computing the
calibration function δmax,L̃,L(., .) for specific L, but because of space constraints we omit the details.

5 Proofs for the Results of Section 2 and 3

Proof of Lemma 2.5: For n ∈ N let us fix an αn ∈ A that satisfies (2) for ε := 1/n. Then for
all x ∈ X we have

C∗L,P (.|x),x = inf
α∈A

CL,P (.|x),x(α) = inf
n∈N

CL,P (.|x),x(αn) ,
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and hence x 7→ C∗L,P (.|x),x is measurable. Furthermore for all n ≥ 1 we have

R∗L,P ≤
∫
X

CL,P (.|x),x(αn) dPX(x) ≤
∫
X

C∗L,P (.|x),x dPX(x) +
1
n

≤ inf
α∈A

∫
X

CL,P (.|x),x(α) dPX(x) +
1
n

≤ R∗
L,P +

1
n
,

and hence we obtain the second assertion if we let n→∞.

Proof of Theorem 2.8: For brevity’s sake we write C1,x(α) := CL1,P (.|x),x(α) − C∗L1,P (.|x),x and
C2,x(α) := CL2,P (.|x),x(α)− C∗L2,P (.|x),x for x ∈ X, α ∈ A. Furthermore let us fix an ε > 0 and write
h(x) := δ(ε, x), x ∈ X. Then for all x ∈ X, and all α ∈ A with C1,x(α) ≥ ε we have C2,x(α) ≥ h(x),
and hence we obtain

RL2,P (α)−R∗
L2,P =

∫
X
C2,x(α) dPX(x) ≥

∫
C1,x(α)≥ε

h(x)dPX(x)

for all α ∈ A. Furthermore, since h(x) > 0 holds for all x ∈ X, the measure ν := b PX is
absolutely continuous with respect to µ := hPX and consequently there exists a δ > 0 such that
ν(A) ≤ ε for all measurable A ⊂ X with µ(A) ≤ δ. For α ∈ A with RL2,P (α) − R∗

L2,P
≤ δ and

A := {x ∈ X : C1,x(α) ≥ ε} the above considerations thus show

RL1,P (α)−R∗
L1,P =

∫
C1,x(α)≥ε

C1,x(α)dPX(x) +
∫
C1,x(α)<ε

C1,x(α)dPX(x) ≤
∫
A
b(x)dPX(x) + ε

≤ 2ε .

From this we easily get the assertion.

Proof of Lemma 2.9: Let us first assume C∗L2,Q,x
= ∞. Then we have δmax (ε,Q, x) = ∞ and

hence ii) is trivially satisfied. Furthermore we have ML2,Q,x(δmax (ε,Q, x)) = ∅, and hence we
obtain i). Let us now assume C∗L2,Q,x

<∞. Then for α ∈ML2,Q,x(δmax (ε,Q, x)) we have

CL2,Q,x(α)− C∗L2,Q,x < δmax (ε,Q, x) = inf
α′∈A

α′ 6∈ML1,Q,x(ε)

CL2,Q,x(α
′)− C∗L2,Q,x,

which shows α ∈ ML1,Q,x(ε). For the proof of the second assertion let us fix a δ with δ >
δmax (ε,Q, x). By definition this means

inf
α∈A

α 6∈ML1,Q,x(ε)

CL2,Q,x(α)− C∗L2,Q,x = δmax (ε,Q, x) < δ,

and hence there exists a α ∈ ML2,Q,x(δ) with α 6∈ ML1,Q,x(ε). Finally, in order to establish (9)
let us fix a α ∈ A. Then for ε := CL1,Q,x(α) − C∗L1,Q,x

we have α 6∈ ML1,Q,x(ε) which implies
α 6∈ ML2,Q,x(δmax (ε,Q, x)) by i). Since the latter means

CL2,Q,x(α) ≥ C∗L2,Q,x + δmax (ε,Q, x) = C∗L2,Q,x + δmax

(
CL1,Q,x(α)− C∗L1,Q,x, Q, x

)
we obtain the assertion.
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Proof of Lemma 2.11: Since ML1,Q,x(ε) is an interval and CL2,Q,x(.) : R → [0,∞) is continuous
we obtain

δmax(ε,Q, x) = min
{

inf
α≤infML1,Q,x(ε)

CL2,Q,x(α), inf
α≥supML1,Q,x(ε)

CL2,Q,x(α)
}
− C∗L2,Q,x .

Moreover, for α ∈ R with α 6∈ ML1,Q,x(ε) we have α 6∈ ML1,Q,x(0
+), and consequently we find

α 6∈ ML2,Q,x(0
+). Now, it is easy to check that the map α 7→ CL2,Q,x(α) is convex, and consequently

it is strictly decreasing on (−∞, infML2,Q,x(0
+)] and strictly increasing on [supML2,Q,x(0

+),∞).
Combining all observations we obtain the assertion.

Proof of Theorem 2.13: Let us use the shorthands C1,x(α) and C2,x(α) defined in the proof of
Theorem 2.8. Assumption (12) together with Lemma 2.9 and R∗

L1,P
<∞, R∗

L2,P
<∞ then gives

δ
(
C1,x(α)

)
≤ C2,x(α) (63)

for all x ∈ X̃ and all α ∈ A. For α ∈ A with RL1,P (α) <∞ Jensen’s inequality together with the
definition of Bα, δ∗∗Bα

(.) ≤ δ(.), and (63), now yields

δ∗∗Bα

(
RL1,P (α)−R∗L1,P

)
≤

∫
X
δ∗∗Bα

(
C1,x(α)

)
dPX(x) ≤

∫
X
C2,x(α) dPX(x) = RL2,P (α)−R∗L2,P .

Finally, for α ∈ A with RL1,P (α) = ∞ we have Bα = ∞. If δ∗∗∞(∞) = 0 there is nothing to prove,
and hence let us assume δ∗∗∞(∞) > 0. Then observe that because of 0 = δ(0) = δ∗∗∞(0) and its
convexity the function δ∗∗ is increasing. Consequently, if there is a t0 > 0 with δ∗∗∞(t0) = ∞ we
obviously have t ≤ c1δ

∗∗
∞(t) + c2 for c1 := 1, c2 := t0 and all t ∈ [0,∞]. On the other hand, if δ∗∗

is finite on [0,∞) then there exists a t0 ≥ 0 and a c0 > 0 such that the (Lebesgue)-almost surely
defined derivative of δ∗∗∞ satisfies (δ∗∗∞)′(t) ≥ c0 for almost all t ≥ t0. By Lebesgue’s version of the
fundamental theorem of calculus (see e.g. the Theorems 26-28 in Chapter X of [11] or the Theorems
271, 269, and 274 in [16]) we then also find constants c1, c2 ∈ (0,∞) with t ≤ c1δ

∗∗
∞(t) + c2 for all

t ∈ [0,∞]. In both cases (63) consequently yields

∞ =
∫
X
C1,x(α)dPX(x) ≤ c1

∫
X
δ∗∗∞

(
C1,x(α)

)
dPX(x) + c2 ≤ c1

(
RL2,P (α)−R∗L2,P

)
+ c2 ,

and hence we have RL2,P (α)−R∗
L2,P

= ∞. This shows the assertion.

Proof of Lemma 2.16: In order to show the first assertion we fix an ε > 0. If δmax(ε,Q) = 0
there is nothing to prove and hence we assume δmax(ε,Q) > 0 without loss of generality. Then
there exists a strictly positive sequence (δn) with δn ↗ δmax(ε,Q) for n→∞, and ML2,Q,x(δn) ⊂
ML1,Q,x(ε) for all n ∈ N. Now let us fix an α ∈ ML2,Q,x(δmax(ε,Q)). Then we have CL2,Q,x(α) −
C∗L2,Q,x

< δmax(ε,Q) and hence there exists an n ∈ N with CL2,Q,x(α) − C∗L2,Q,x
< δn. Obviously

this implies α ∈ML2,Q,x(δn) ⊂ML1,Q,x(ε), i.e. we have shown the first assertion.
In order to prove the second assertion we write δ(ε) := infx∈X δmax (ε,Q, x) for ε > 0. Since
δ(ε) ≤ δmax (ε,Q, x) for all x ∈ X, Q ∈ Q, and ε > 0, we then obtain

ML2,Q,x(δ(ε)) ⊂ML2,Q,x(δmax (ε,Q, x)) ⊂ML1,Q,x(ε) .

This shows δ(ε) ≤ δmax(ε,Q). In order to prove the converse inequality let us assume δ(ε) <
δmax(ε,Q) for some ε > 0. Then there exist Q ∈ Q and x ∈ X with δmax (ε,Q, x) < δmax(ε).
However, the already proved first assertion shows ML2,Q,x(δmax(ε,Q)) ⊂ ML1,Q,x(ε), and hence
we find a contradiction by ii) in Lemma 2.9.

44



Proof of Theorem 2.17: Let us fix an x ∈ X and a Q ∈ Q. Furthermore, let P be the distri-
bution on X × Y with PX = δ{x}, where δ{x} is the Dirac measure in x, and P (.|x) = Q. Then
P is of type Q and we have RLi,P (α) = CLi,Q,x(α) and R∗

Li,P
= C∗Li,Q,x

< ∞ for i = 1, 2 and all
measurable α ∈ A. Consequently our assumption yields

δ
(
CL1,Q,x(α)− C∗L1,Q,x

)
≤ CL2,Q,x(α)− C∗L2,Q,x

for all α ∈ A. Now let ε > 0 and α ∈ML2,Q,x(δ(ε)). Then we have CL2,Q,x(α)−C∗L2,Q,x
< δ(ε) and

hence the above inequality yields δ(CL1,Q,x(α)−C∗L1,Q,x
) < δ(ε). Since δ is monotonically increasing

the latter shows CL1,Q,x(α)− C∗L1,Q,x
< ε, i.e. we have found ML2,Q,x(δ(ε)) ⊂ML1,Q,x(ε). Lemma

2.9 then shows δ(ε) ≤ δmax (ε,Q, x), and hence L2 is uniformly L1-calibrated with respect to Q.

Proof of Theorem 2.18: Let us use the shorthands C1,x(α) and C2,x(α) defined in the proof of
Theorem 2.8. Then our assumption on δmax(ε, x) together with (9) yields (C2,x(α))qb(x) ≤ C1,x(α)
for all x ∈ X, α ∈ A, and hence using Hölder’s inequality with r defined by q = 1

r + 1 gives

RL1,P (α)−R∗L1,P ≤
(∫
X

(
b(x))−

1
q
(
C1,x(α)

) 1
q dPX(x)

) q
q

≤
(∫
X

b−rdPX

) 1
qr

(∫
X

C1,x(α) dPX(x)
) 1

q

.

Since p ≥ r we then find the assertion.

For the proof of Theorem 3.2 we need a method for finding measurable selections from multi-
valued maps of specific forms. We begin with some basics: Let X, Y , and Z be measurable spaces,
h : X × Z → Y and A ⊂ Y be measurable, and

F : X → 2Z

x 7→
{
z ∈ Z : h(x, z) ∈ A

}
.

(64)

Furthermore we write

DomF :=
{
x ∈ X : F (x) 6= ∅

}
,

GrF :=
{
(x, z) ∈ X × Z : z ∈ F (x)

}
,

F−1(B) :=
{
x ∈ X : F (x) ∩B 6= ∅

}
B ⊂ Z.

Note that we have DomF = F−1(Z) and GrF = {(x, z) ∈ X × Z : h(x, z) ∈ A}, so that in
particular GrF is measurable. Furthermore, if πX : X × Z → X denotes the projection onto X
then we have

DomF =
{
x ∈ X : ∃z ∈ Z with h(x, z) ∈ A

}
= πX

({
(x, z) ∈ X × Z : h(x, z) ∈ A

})
= πX

(
GrF

)
.

Now the following result provides a sufficient condition under which DomF is measurable and F
admits measurable selections.

Lemma 5.1 Let (X,X ) be a complete measurable space, Z be a Polish space equipped with its Borel
σ-algebra, and Y be a measurable space. Furthermore let h : X × Z → Y be a measurable map,
A ⊂ Y be measurable and F : X → 2Z be defined by (64). Then the following are true:

i) DomF is measurable.

ii) There exists a sequence of measurable functions fn : X → Z such that for all x ∈ DomF the
set {fn(x) : n ∈ N} is dense in F (x).
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iii) Let ϕ : X × Z → [0,∞] be measurable and ψ : X → [0,∞] be defined by

ψ(x) := inf
z∈F (x)

ϕ(x, z) , x ∈ X. (65)

Then ψ is measurable. Furthermore, for all n ≥ 1 there exists a measurable fn : X → Z such
that for all x ∈ DomF we have fn(x) ∈ F (x) and ϕ(x, fn(x)) ≤ ψ(x)+1/n, and consequently

ψ(x) = inf
n∈N

ϕ
(
x, fn(x)

)
.

In addition, if the infimum in (65) is attained for all x ∈ DomX then there exists a measurable
function f : X → Z with ψ(x) = ϕ(x, f(x)) for all x ∈ DomF .

Proof: i). Let us first recall that the so-called projection theorem [7, Thm. III.23, p. 75] ensures
πX(B) ∈ X for all B ∈ X ⊗B(Z). Now the assertion directly follows from DomF = πX(GrF ) and
the projection theorem.
ii). Let X̃ be the trace σ-algebra of X on DomF . Then it is easy to see that X̃ is a complete
σ-algebra. Furthermore, F|DomF : DomF → 2Z obviously maps DomF to non-empty subsets of Z
and in addition we have

Gr(F|DomF ) =
{
(x, z) ∈ DomF × Z : z ∈ F (x)

}
= GrF ∩

(
DomF × Z

)
,

and hence Gr(F|DomF ) is measurable. Now Aumann’s selection theorem in the form of [7,
Thm. III.22, p. 74] gives a sequence of X̃ -measurable functions f̃n : DomF → T such that
{fn(x) : n ∈ N} is dense in F (x) for all x ∈ DomF . Extending these functions to measurable
functions fn : X → T gives the assertion.
iii) The measurability follows from [7, Lem. III.39, p. 86]. Furthermore, on the measurable set
{x ∈ X : ψ(x) = ∞} there is nothing to prove and hence we may restrict our considerations to
DomF ∩ {x ∈ X : ψ(x) <∞} equipped with the trace σ-algebra of X . Then the existence of fn is
shown in [7, p. 87]. Finally, the existence of a measurable f : X → Z is shown in [7, p. 86].

Proof of Theorem 3.2: First note that the measurability of (x, t) 7→ CL,P (.|x),x(t) can be shown
using standard arguments.
i). If C∗L,P (.|x),x = ∞ for some x ∈ X, then (2) cannot be true for this x, and hence L̂ is not
P -minimizable. To see the converse implication observe that the multivalued map F : X → 2T ,
defined by F (x) := T for all x ∈ X, is obviously of the form (64) for arbitrary measurable h and
A := T . We write ϕ(x, t) := CL,P (.|x),x(t) for all x ∈ X, t ∈ T , so that ϕ : X × T → [0,∞] is
measurable. Then we have

C∗L,P (.|x),x = inf
t∈F (X)

ϕ(x, t) (66)

for all x ∈ X, and consequently Lemma 5.1 shows that for all n ≥ 1 there exists a measurable
function fn : X → T with

CL,P (.|x),x(fn(x)) = ϕ
(
x, fn(x)

)
≤ C∗L,P (.|x),x + 1/n < C∗L,P (.|x),x + 2/n

for all x ∈ DomF = X. From this we easily conclude that L̂ is P -minimizable.
ii). This assertion also follows from Lemma 5.1 since ML,P (.|x),x(0+) 6= ∅ for all x ∈ X ensures
that the infimum in (66) is attained for all x ∈ X.
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Proof of Theorem 3.3: Without loss of generality we may assume C∗Li,P (.|x),x <∞ for all x ∈ X
and i = 1, 2. To show the measurability of x 7→ δmax(ε, P (.|x), x) we equip [0,∞] with the Borel
σ-algebra, write A := [ε,∞], and define h : X × T → [0,∞] by

h(x, t) := CL1,P (.|x),x(t)− C∗L1,P (.|x),x , (x, t) ∈ X × T .

Then h is measurable and for F : X → 2T defined by (64) we have T \ML1,P (.|x),x(ε) = F (x) for
all x ∈ X. Furthermore, ϕ : X × T → [0,∞] defined by

ϕ(x, t) := CL2,P (.|x),x(t)− C∗L2,P (.|x),x , (x, t) ∈ X × T ,

is also measurable. For all x ∈ X our construction yields

δmax(ε, P (.|x), x) = inf
t∈F (x)

ϕ(x, t) ,

and consequently we obtain the measurability of x 7→ δmax(ε, P (.|x), x) by Lemma 5.1.
Let us now assume that there exists an ε > 0 such that B := {x ∈ X : δmax(ε, x) = 0} satisfies
PX(B) > 0. With the above notations we obviously have B ⊂ DomF . Moreover for all n ≥ 1
Lemma 5.1 gives us a measurable function f (1)

n : X → T with

CL2,P (.|x),x(f
(1)
n (x))− C∗L2,P (.|x),x ≤ 1

n
and CL1,P (.|x),x(f

(1)
n )− C∗L1,P (.|x),x ≥ ε

for all x ∈ B. Furthermore, since L2 is P -minimizable there also exist measurable functions
f

(2)
n : X → T with

CL2,P (.|x),x(f
(2)
n (x))− C∗L2,P (.|x),x ≤ 1

n

for all x ∈ X. We define fn : X → T by fn(x) := f
(1)
n (x) if x ∈ B, and fn(x) := f

(2)
n (x) otherwise.

Then fn is measurable and our construction yields both limn→∞RL2,P (fn) = R∗
L2,P

and

RL1,P (f)−R∗
L1,P ≥

∫
B
CL1,P (.|x),x(t)− C∗L1,P (.|x),x dPX(x) ≥ εPX(B) .

From this we easily obtain the assertion.

Proof of Theorem 3.6: Since δmax(.,Q) is monotonously increasing, the set

U :=
{
ε > 0 : δmax(.,Q) not continuous in ε

}
is at most countable, and hence there exists a sequence (εn) with {εn : n ∈ N} = U∪{r ∈ Q : r > 0}.
Then for all n,m ≥ 1 there exists a distribution Qn,m ∈ Q with

1
m

+ δmax(εn,Q) > δmax(εn, Qn,m) = inf
t∈T

t6∈ML1,Qn,m (εn)

CL2,Qn,m(t)− C∗L2,Qn,m
.

Therefore for all n,m ≥ 1 there exist tn,m ∈ T with tn,m 6∈ ML1,Qn,m(εn) and

CL2,Qn,m(tn,m)− C∗L2,Qn,m
< δmax(εn,Q) +

1
m
.

Now, let An,m ⊂ X, n ≥ 1, be according to our assumption. Note that without loss of generality
we can additionally assume X =

⋃
n,mAn,m. Consequently, for x ∈ X there exists a unique
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(nx,mx) ∈ N × N with x ∈ Anx,mx,mx
. Furthermore, let P be the distribution on X × Y which is

defined by the conditions PX = µ and P (.|x) = Qnx,mx , x ∈ X. Now let us fix an n ≥ 1. Then for
all x ∈

⋃
mAn,m our construction gives tn,mx 6∈ ML1,P (.|x),x(εn), and hence we obtain

δmax(εn, P ) ≤ CL2,Qn,mx
(tn,mx)− C∗L2,Qn,mx

< δmax(εn,Q) +
1
mx

.

Minimizing over x ∈
⋃
mAn,m then gives δmax(εn, P ) ≤ δmax(εn,Q) for all n ∈ N, and consequently

we have δmax(εn, P ) = δmax(εn,Q) for all n ∈ N. In particular, this shows δmax(ε, P ) = δmax(ε,Q)
for all ε ∈ U . Now let ε > 0 with ε 6∈ U . There there exists a sub-sequence (εnk

) of (εn) with
εnk

↘ ε for k →∞. This gives δmax(εnk
, P ) = δmax(εnk

,Q) → δmax(ε,Q), and hence we have

δmax(ε,Q) ≥ inf
k≥1

δmax(εnk
, P ) ≥ inf

ε′≥ε
δmax(ε′, P ) = δmax(ε, P )

by the monotonicity of δmax(., P ). From this we easily obtain (18).

Proof of Theorem 3.9: To shorten notations we write

C1,x(f) := CL1,P (.|x),x(f(x))− C∗L1,P (.|x),x , and
C2,x(f) := CL2,P (.|x),x(f(x))− C∗L2,P (.|x),x

for x ∈ X and measurable f : X → T . Furthermore, for s > 0 we write

C(s) :=
{
x ∈ X : A(x) 6= T , and δmax(h(x), P (.|x), x) ≥ s h(x)

}
.

By (9) and (20) we then obtain

RL1,P (f)−R∗L1,P =
∫
B(s)

1A
(
x, f(x)

)
h(x) dPX(x) +

∫
C(s)

1A
(
x, f(x)

)
h(x) dPX(x)

≤
∫

1B(s)h dPX + s−1

∫
C(s)

δmax

(
h(x), P (.|x), x

)
1A

(
x, f(x)

)
dPX(x)

≤ (c s)α + s−1

∫
C(s)

δmax

(
C1,x(f), P (.|x), x

)
dPX(x)

≤ (c s)α + s−1
(
RL2,P (f)−R∗

L2,P

)
.

For α <∞, the assertion then follows by setting s := (αcα)−
1

α+1
(
RL2,P (f)−R∗

L2,P

) 1
α+1 and using

α−
α

α+1 + α
1

α+1 ≤ 2.
Furthermore, for α = ∞ the assertion follows by setting s−1 := 2c.

Proof of Lemma 3.13: Let P be a distribution on X × Y with P (.|x) ∈ Qmin(L) for all x ∈ X.
We write X̄ := X × R and Z := R. Furthermore, for x̄ = (x, t) ∈ X̄ and t′ ∈ Z we define

h(x̄, t′) := CL,P (.|x)(t
′)− C∗L,P (.|x) ,

F (x̄) := {t′ ∈ R : h(x̄, t′) = 0} , and
ϕ(x̄, t′) := |t− t′| .

For the P -instance L̆P of L̆ we then have

L̆P (x, t) = inf
t′∈ML,P (.|x)(0

+)
|t− t′| = inf

t′∈F (x̄)
ϕ(x̄, t′) ,

and consequently we obtain the assertion by part iii) of Lemma 5.1.
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Proof of Theorem 3.16: For a fixed ρ > 0 we write Aρ = {(Q, t) ∈ Q × R : L̆(Q, t) ≥ ρ}. By
Lemma 3.13 we then see that L̄ := 1Aρ defines a template loss function, whose P -instance L̄P is a
detection loss with h = 1X . Furthermore, we have ML̄,Q(ε) =

{
t ∈ R : L̆(Q, t) < ρ

}
= ML̆,Q(ρ)

for all ε > 0 and Q ∈ Q, and thus we find

δmax,L̄,L(ε,Q) = δmax,L̆,L(ρ,Q) > 0 .

In other words, L is L̄-calibrated with respect to Q. For ε > 0 Theorem 3.3 thus gives a δ > 0 such
that for f : X → R with RL,P (f) < R∗L,P + δ we have

PX
({
x ∈ X : L̆P

(
x, f(x)

)
≥ ρ

})
= RL̄P ,P

(f)−R∗
L̄P ,P

< ε .

Proof of Proposition 3.19: We write α := pq
p+1 and L̄ := L̆α. Then L̄ is a template loss function

by Lemma 3.13, and since ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε} we easily find

δmax,L̄,L(ε,Q) = δmax,L̆,L(ε1/α, Q) , ε > 0, Q ∈ Q.

Furthermore, we obviously have q
α ≥

p+1
p and R∗

L̆,P
= 0, and therefore Theorem 2.18 yields

‖x 7→ L̆P (x, f(x))‖αα = RL̄P ,P
(f)−R∗

L̄P ,P
≤ ‖b−1‖

α
q
p

(
RL,P (f)−R∗L,P

)α
q
.

Appendix

In this appendix we discuss some simple properties of convex functions. Recall that a function
f : I → R on an interval I ⊂ R is called convex if for all x1, x2 ∈ I and all α ∈ [0, 1] we have

f
(
αx1 + (1− α)x2

)
≤ αf(x1) + (1− α)f(x2) .

Furthermore, it is called strictly convex if this inequality is strict for all x1, x2 ∈ I with x1 6= x2,
and all α ∈ (0, 1). Obviously, every strictly convex function is also convex. Furthermore, it is
well-known that convex functions f : I → R are continuous on the interior of I. The following
lemma describes some less trivial relations between the different notions of convexity:

Lemma A.1 Let f : I → R be a function. Then we have:

i) If f is convex and satisfies f(α0x1+(1−α0)x2) = α0f(x1)+(1−α0)f(x2) for some x1, x2 ∈ I,
α0 ∈ [0, 1], then actually for all α ∈ [0, 1] we have

f
(
αx1 + (1− α)x2

)
= αf(x1) + (1− α)f(x2) . (67)

ii) If f is continuous then f is convex if and only if for all x1, x2 ∈ I we have

f
(x1 + x2

2

)
≤ 1

2
f(x1) +

1
2
f(x2) . (68)
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iii) If f is continuous then f is strictly convex if and only if for all x1, x2 ∈ I with x1 6= x2 we
have

f
(x1 + x2

2

)
<

1
2
f(x1) +

1
2
f(x2) . (69)

iv) If f is uniformly convex and continuous then it is strictly convex. Conversely, if I is compact
and f is strictly convex and continuous then it is actually uniformly convex.

Proof: i). This assertion can be shown using elementary calculations.
ii). This follows from [2, Thm. 8 and 10].
iii). If (69) holds then we have already seen that f is convex. Consequently, if f was not strictly
convex we would have (67). However, by i) we could then assume α0 = 1

2 which would give a
contradiction.
iv) The first assertion follows from iii) and the second assertion is trivial.

Our next aim is to investigate the modulus of convexity. Although this concept, in an equivalent
formulation, has already been introduced in 1966 (see [23], [17]) almost nothing that is useful for
us, seems to be known (see however [5, 35] and the references therein for some general information
on the modulus). Therefore, we present the following two lemmas which provide some ways to
simplify the computation of δf (ε):

Lemma A.2 Let ∅ 6= I ⊂ R be an interval and f : I → R be strictly convex. Then we have

δf (2ε) = inf
{
f(x− ε) + f(x+ ε)

2
− f(x) : x satisfies x−ε ∈ I and x+ε ∈ I

}
, ε > 0.

Proof: For fixed x1 ∈ I we define hx1 : I → [0,∞) by hx1(x2) := f(x1)+f(x2)
2 − f(x1+x2

2 ), x2 ∈ I.
The fundamental theorem of calculus for Lebesgue integrals then shows that the derivative h′x1

(x2)
exists for almost all x2, and an easy calculation shows h′x1

(x2) = f ′(x2)
2 − 1

2f
′(x1+x2

2 ) for such x2.
Furthermore, since f is strictly convex and hx1 has a unique minimum at x1, we obtain h′x1

(x2) < 0
if x2 < x1, and h′x1

(x2) > 0 if x2 > x1. The fundamental theorem of calculus for Lebesgue integrals
then shows that hx1 is strictly decreasing on (−∞, x1) ∩ I, and strictly increasing on (x1,∞) ∩ I,
and thus we have

δf (2ε) = min
{

inf
x1∈I

x1−2ε∈I

hx1(x1 − 2ε), inf
x1∈I

x1+2ε∈I

hx1(x1 + 2ε)
}

= inf
x1+ε∈I
x1−ε∈I

hx1−ε(x1 + ε) ,

where in the last step we used hx1−ε(x1 + ε) = hx1+ε(x1 − ε).

With the help of the following lemma we can often estimate the modulus of convexity.

Lemma A.3 Let I ⊂ R be a symmetric interval, i.e. x ∈ I implies −x ∈ I. Then for all strictly
convex, symmetric f : I → [0,∞) and all ε > 0 we have

δf (2ε) = inf
x≥0
x+ε∈I

f(x− ε) + f(x+ ε)
2

− f(x) =
1
2

inf
x≥0
x+ε∈I

∫ x+ε

x

(
f ′(t)− f ′(t− ε)

)
dt .

Furthermore, if I = R, then for all x ≥ 12ε we have

f(x) ≥
2δf (2ε)x2

ε2
.
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Proof: The first equation follows from Lemma A.2 and the symmetry assumptions. Furthermore,
by the fundamental theorem of calculus for Lebesgue integrals we obtain

f(x+ ε) + f(x− ε) = 2f(x) +
∫ x+ε

x

(
f ′(t)− f ′(t− ε)

)
dt , (70)

and hence the second equation follows. Finally, in order to show the last assertion we first observe
that f has a minimum at 0, and hence we have f ′(t) ≥ 0 for all t ≥ 0 where the derivative exists.
We write b := 2δf (2ε), and xn := 2εn for n ≥ 1. These definitions together with (70) yield real
numbers tn ∈ [xn, xn + ε], n ≥ 1, that satisfy

b ≤
∫ xn+ε

xn

(
f ′(t)− f ′(t− ε)

)
dt ≤ ε

(
f ′(tn)− f ′(tn − ε)

)
,

i.e. we obtain f ′(tn) ≥ f ′(tn−ε)+ b
ε for all n ≥ 1. Furthermore we have tn−ε ≥ xn−ε = xn−1+ε ≥

tn−1 and hence f ′(tn− ε) ≥ f ′(tn−1), n ≥ 2. By induction we thus find f ′(tn+1) ≥ f ′(t1) + bn
ε ≥

bn
ε

for all n ≥ 1. Now let t ≥ 6ε such that f ′(t) exists. Then there is an n ≥ 3 with 2εn ≤ t < 2ε(n+1),
and hence we get

f ′(t) ≥ f ′(tn−1) ≥
b(n− 2)

ε
>
b(x− 6ε)

2ε2
.

Consequently, for x ≥ 12ε the fundamental theorem of calculus for Lebesgue integrals gives

f(x) = f(6ε) +
∫ x

6ε
f ′(t)dt ≥ b

2ε2

∫ x

6ε
(t− 6ε)dt =

b(x− 6ε)2

4ε2
≥ bx2

ε2
.

Example A.4 We write I := [−B,B], and for 0 < p < 2 we define ψ : I → [0,∞] by ψ(t) := |t|p, t ∈ I.
Then for all ε ∈ [0, B] we have

p(p− 1)
2

Bp−2ε2 ≤ δψ(2ε) ≤ p

2(p− 1)2
Bp−2ε2 .

To see this let t ∈ [0, 1] and a ∈ (0, 1). Then we have (1− 0)a = 1− a0 and −a(1− t)a−1 ≤ −a, and thus we
obtain (1− t)a ≤ 1−at by the fundamental theorem of calculus. For s := 1/t we hence find (1− 1

s )
a ≤ 1− a

s
which is equivalent to (s−1)a ≤ sa−asa−1. Since in addition sa−1 ≤ (s−1)a−1 implies sa−sa−1 ≤ (s−1)a

we have
asa−1 ≤ sa − (s− 1)a ≤ sa−1 (71)

for all 0 < a < 1 and all s ≥ 1. Now an easy calculation shows

ψ′(t)− ψ′(t− ε) = p

{
tp−1 − (t− ε)p−1 if t ≥ ε

tp−1 + (ε− t)p−1 if 0 ≤ t ≤ ε .

Furthermore, for s := t
ε ≥ 1 we have ψ′(t)− ψ′(t− ε) = εp−1

(
sp−1 − (s− 1)p−1

)
, and thus our preliminary

considerations give

(p− 1)εtp−2 = (p− 1)εp−1sp−2 ≤ ψ′(t)− ψ′(t− ε) ≤ εp−1sp−2 = εtp−2 .

From this we can easily prove the assertion using basic calculations.

Example A.5 We write I := [−B,B] and define ψ : I → [0,∞] by ψ(t) := − ln 4et

(1+et)2 , t ∈ I. Then for all
ε ∈ [0, B] we have

eε − 1
2eε

ln
eB + e2ε

eB + eε
≤ δψ(2ε) ≤ eε − 1

eε
ln
eB + e2ε

eB + eε
.
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Indeed, an easy calculation shows ψ′(t) = et−1
et+1 for all t ∈ I, and hence we obtain

ψ′(t)− ψ′(t− ε) =
et − 1
et + 1

− et − eε

et + eε
=

2et(eε − 1)
(et + 1)(et + eε)

for all t ∈ [0, B], ε ∈ [0, B]. Consequently we have

eε − 1
et + eε

≤ ψ′(t)− ψ′(t− ε) ≤ 2
eε − 1
et + eε

for all t ∈ [0, B], ε ∈ [0, B]. Furthermore, for ε > 0 an easy calculation gives

inf
x∈[0,B−ε]

∫ x+ε

x

eε − 1
et + eε

dt =
∫ B

B−ε

eε − 1
et + eε

dt =
eε − 1
eε

(
t− ln

(
et + eε

))∣∣∣∣B
t=B−ε

=
eε − 1
eε

ln
eB + e2ε

eB + eε
.

From this we easily find the assertion.

The following two lemmas establish important properties of the Fenchel-Legendre bi-conjugate
operation ∗∗. We begin with

Lemma A.6 Let B > 0 and δ : [0, B] → [0,∞) be a monotone increasing function with δ(0) = 0
and δ(ε) > 0 for all ε ∈ (0, B]. Then for all ε ∈ (0, B] we have

δ∗∗(ε) > 0 .

Proof: Let us assume that there exists an 0 < ε ≤ B with δ∗∗(ε) = 0. Then we have (ε, 0) ∈
Epi δ∗∗ = co Epi δ, and hence there exists a sequence (εn, yn) ∈ co Epi δ with εn → ε and yn → 0.
Furthermore, we have co Epi δ ⊂ R2, and hence Carathéodory’s theorem (see e.g. [24][p. 55])
guarantees that for all n ≥ 1 there exist εn,1, εn,2, εn,3 ∈ [0, B], yn,1, yn,2, yn,3 ∈ [0,∞), and
αn,1, αn,2, αn,3 ∈ [0, 1] with

εn = αn,1εn,1 + αn,2εn,2 + αn,3εn,3 ,

yn = αn,1yn,1 + αn,2yn,2 + αn,3yn,3 ,

1 = αn,1 + αn,2 + αn,3 ,

yn,i ≥ δ(εn,i) , i = 1, . . . , 3.

In addition we may assume εn,1 ≤ εn,2 ≤ εn,3 without loss of generality. Since this yields εn =
αn,1εn,1 +αn,2εn,2 +αn,3εn,3 ≤ εn,3 we find yn,3 ≥ δ(εn,3) ≥ δ(εn) ≥ δ( ε2) > 0 for large n. Recalling
yn → 0 we thus obtain αn,3 → 0 which implies both αn,1 + αn,2 → 1 and αn,1εn,1 + αn,2εn,2 → ε.
However, the latter convergence gives ε

2 ≤ αn,1εn,1 + αn,2εn,2 ≤ (αn,1 + αn,2)εn,2 for large n, and
hence we have εn,2 ≥ ε

4 for large n. Again this shows yn,2 ≥ δ(εn,2) ≥ δ( ε4) > 0 for large n, and
thus we find αn,2 → 0. Obviously, this yields both αn,1 → 1 and αn,1εn,1 → ε, and hence we obtain
εn,1 ≥ ε

4 for large n. Finally, this gives yn,1 ≥ δ(εn,1) ≥ δ( ε4) > 0 for large n and therefore we find
αn,1 → 0 which contradicts the already found convergence αn,1 → 1.

Lemma A.7 Let B > 0, and δ : [0, B] → [0,∞) be a continuous function with δ(0) = 0. We define
δ̃ : [0, B] → [0,∞) by δ̃(ε) := infε′≥ε δ(ε), ε ∈ [0, B]. Then δ̃ is monotonously increasing, and for
all ε ∈ [0, B] we have

δ∗∗(ε) = δ̃∗∗(ε) .

In addition, if δ(ε) > 0 for all ε ∈ (0, B], then δ̃(ε) > 0 for all ε ∈ (0, B].

52



Proof: The first assertion is trivial and the third assertion directly follows from the continuity of
δ. Therefore, it remains to show

co Epi δ = co Epi δ̃ (72)

since this equation immediately yields δ∗∗ = δ̃∗∗. To establish (72) we first observe that δ̃(ε) ≤ δ(ε)
for all ε ∈ [0, B] and hence we have co Epi δ ⊂ co Epi δ̃. To prove the converse inclusion observe that
it suffices to show (ε, δ̃(ε)) ∈ co Epi δ for all ε ∈ [0, B]. Furthermore, we have δ̃(0) = 0 = δ(0) and
δ̃(B) = δ(B) and hence we can restrict our considerations to pairs (ε, δ(ε)) for ε ∈ (0, B). Therefore
let us fix an ε ∈ (0, B). By the definition of δ̃ we then find an ε+ ∈ [ε,B] with δ(ε+) = δ̃(ε).
Furthermore, we have δ(0) ≤ δ̃(ε) ≤ δ(ε) and hence the intermediate value theorem applied to the
continuous function δ gives us an ε− ∈ [0, ε] with δ(ε−) = δ̃(ε). Now, there exists an α ∈ [0, 1] with
ε = αε+ + (1− α)ε− and since our previous considerations showed

δ̃(ε) = αδ̃(ε) + (1− α)δ̃(ε) = αδ(ε+) + (1− α)δ(ε−)

we obtain (ε, δ̃(ε)) ∈ co Epi δ.
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